Manejo Integral del Cultivo de la Granadilla (*Passiflora ligularis* Juss)

ISBN 958-33-4006-5

Bernardo Rivera
Diego Miranda
Luis Alfredo Avila
Ana Milena Nieto
Manejo Integral del Cultivo de la Granadilla (Passiflora ligularis Juss)

ISBN 958-33-4006-5

Bernardo Rivera
Diego Miranda
Luis Alfredo Avila
Ana Milena Nieto
Manejo integral del cultivo de la granadilla

(Passiflora ligularis Juss)

AUTORES

Bernardo Rivera
Diego Miranda
Luis Alfredo Avila
Ana Milena Nieto

Octubre 2002
Primera edición
750 ejemplares

La reproducción total o parcial no está restringida; se agradece dar crédito a esta publicación.
PRESENTACIÓN

El proyecto “Recuperación y sistematización de las experiencias generadas por pequeños caficultores con la asociación café – granadilla en los municipios de Roldanillo y Bolívar (Valle del Cauca)”, ejecutado por el Grupo de Investigación en Análisis de Sistemas de Producción Agropecuaria (ASPA) de la Universidad de Caldas, con el apoyo del Programa Nacional de Transferencia de Tecnología Agropecuaria (PRONATTA) del Ministerio de Agricultura y Desarrollo Rural, estimuló la preparación de esta publicación. En las revistas especializadas es posible encontrar una rica información científica, la gran mayoría producida por investigadores nacionales; también existen importantes iniciativas de cartillas, plegables y documentos de diversa índole, dirigidos a los productores de granadilla. No existe, sin embargo, una publicación que consolide la información técnica y científica especializada con una visión amplia que integre las dimensiones productiva, económica, ambiental y social; y considere, de manera sistemática los componentes tecnológicos del cultivo: genética, nutrición, salud y gestión.

La información, muy dispersa y de difícil acceso en las universidades; los materiales de tipo divulgativo orientados a los productores; y la falta absoluta de documentos de tipo académico y de apoyo a la investigación, a la docencia y a la transferencia de tecnología, son los aspectos que motivaron el esfuerzo de recuperar la literatura especializada y ponerla de una manera sistemática al servicio del lector, lo mismo que las experiencias generadas a través de la investigación. No obstante, consideramos a los autores que la presente publicación también aporta herramientas útiles para los productores de granadilla.

A los productores de granadilla de los municipios de Roldanillo y Bolívar en el norte del Valle del Cauca y a los productores que inician un proceso de reconversión de la caficultura a través del cultivo de la granadilla, en los municipios de Samaná, Pensilvania, Aguadas y Marsella, nuestros más sinceros agradecimientos. A los Drs. Gerhard Fischer, profesor de la Universidad Nacional de Colombia, y Germán Franco, investigador de CORPOICA, nuestro reconocimiento por la paciencia que tuvieron para la lectura de los manuscritos y la voluntad para contribuir con sus aportes a mejorar la calidad de nuestro producto. Finalmente, queremos expresar el agradecimiento a nuestras instituciones: Universidad de Caldas - Grupo ASPA, Universidad Nacional de Colombia sede Bogotá e Instituto de Educación Superior Colegio Integrado Nacional Oriente de Caldas.

Los Autores
Acerca de los autores

Bernardo Rivera. Doctor en Ciencias Agrarias de la Universidad Técnica de Ber- lin; profesor de la Facultad de Ciencias Agropecuarias de la Universidad de Cal- das; ha sido investigador del Centro Internacional de Agricultura Tropical (CIAT), del Centro Internacional de Investigaciones para el Desarrollo (CIID) y de la Cor- poración Colombiana de Investigación Agropecuaria (CORPOICA). Es Director del Grupo de Investigación en Análisis de Sistemas de Producción Agropecuaria (ASPA) y coordinador del Proyecto “Recuperación y sistematización de las experiencias generadas por pequeños caficultores con la asociación café – granadilla en los municipios de Roldanillo y Bolívar (Valle del Cauca)” (PRONATTA-Universidad de Caldas).
brivera@cumanday.ucaldas.edu.co

Diego Miranda. Ingeniero agrónomo y Magíster en Fisiología de Cultivos de la Universidad Nacional de Colombia; ha sido investigador del Instituto Colombiano Agropecuario (ICA) y de la Corporación Colombiana de Investigación Agropecuaria (CORPOICA). Actualmente, es profesor asociado de la Facultad de Agronomía de la Universidad Nacional sede Bogotá, en las áreas de Manejo de Frutas Tropicales y Propagación Vegetal. Es coordinador de la línea de Profundización en Frutas Tropicales.
dmiranda@bacata.usc.unal.edu.co

Luis Alfredo Avila. Ingeniero Agrónomo de la Universidad de Caldas y Adminis- trador de Empresas de la Universidad Nacional de Colombia; docente investiga- dor del Instituto de Educación Superior Colegio Integrado Nacional Oriente de Caldas (IES-CINOC). Ha sido co-investigador del proyecto “Recuperación y siste- matización de las experiencias generadas por pequeños caficultores con la aso- ciación café – granadilla en los municipios de Roldanillo y Bolívar (Valle del Cauca)” (PRONATTA-Universidad de Caldas).
avilatorresluis@hotmail.com

Ana Milena Nieto. Ingeniera Agrónoma de la Universidad de Caldas y miembro fundador del seminario de investigación del Grupo ASPA. Co-investigadora del proy- yecto “Recuperación y sistematización de las experiencias generadas por peque- ños caficultores con la asociación café – granadilla en los municipios de Roldanillo y Bolívar (Valle del Cauca)” (PRONATTA-Universidad de Caldas).
a1000ena@hotmail.com
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Contenido</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Potencial del cultivo de la granadilla</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>Descripción taxonómica y morfológica de la granadilla</td>
<td>9</td>
</tr>
<tr>
<td>III</td>
<td>Aspectos ecofisiológicos del cultivo de la granadilla</td>
<td>17</td>
</tr>
<tr>
<td>IV</td>
<td>Propagación de la granadilla</td>
<td>31</td>
</tr>
<tr>
<td>V</td>
<td>Establecimiento del cultivo de la granadilla</td>
<td>37</td>
</tr>
<tr>
<td>VI</td>
<td>Podas y labores complementarias en el cultivo de la granadilla</td>
<td>43</td>
</tr>
<tr>
<td>VII</td>
<td>Manejo de la nutrición en el cultivo de la granadilla</td>
<td>51</td>
</tr>
<tr>
<td>VIII</td>
<td>Enfermedades del cultivo de la granadilla</td>
<td>57</td>
</tr>
<tr>
<td>IX</td>
<td>Plagas del cultivo de la granadilla</td>
<td>71</td>
</tr>
<tr>
<td>X</td>
<td>Desordenes fisiológicos en el cultivo de la granadilla</td>
<td>81</td>
</tr>
<tr>
<td>XI</td>
<td>Recomendaciones para el manejo integrado del cultivo de la granadilla</td>
<td>85</td>
</tr>
<tr>
<td>XII</td>
<td>Cosecha y poscosecha de la granadilla</td>
<td>91</td>
</tr>
<tr>
<td>XIII</td>
<td>Aspectos de gestión del cultivo de la granadilla</td>
<td>105</td>
</tr>
<tr>
<td>XIV</td>
<td>Experiencias en arreglos productivos del cultivo de la granadilla</td>
<td>113</td>
</tr>
</tbody>
</table>
CAPITULO I

POTENCIAL DEL CULTIVO DE LA GRANADILLA

El comercio hortifrutícola, que comprende el comercio mundial de frutas, hortalizas, tubérculos y sus procesados, alcanzó US$ 82.551 millones en 1999, con una participación del 19,8% en el comercio agropecuario (IICA, 2001). Entre 1990 y 1999, la dinámica de crecimiento del comercio de los productos frutícolas fue mayor (4,9%) que la del sector agropecuario en general (3,9%).

Según el IICA (2001), en 1999 el comercio internacional de frutas fue dominado por los caducifolios y los cítricos (19% cada uno); seguido por el banano (18%), las nueces (10%) y las frutas tropicales sin banano (10%). En el año 2000, el país exportó US$ 14 millones de frutas frescas diferentes al banano, principalmente uchuva (45%), bananito (17%), granadilla y maracuyá (8%), tomate de árbol (8%), mango (6%) y pitahaya (5%). En este mismo año, el sector hortofrutícola colombiano utilizó 30,9% de los 4 millones de ha sembradas en Colombia.

La granadilla, Passiflora ligularis Juss., es una fruta originaria de América Tropical, que se cultiva desde el norte de Argentina hasta México (Leal, 1990). Colombia es uno de los más importantes productores de fruta a nivel mundial, junto con Venezuela, Suráfrica, Kenya y Australia (Universidad de los Andes, 1994). En Perú, la granadilla es la pasiflorácea de mayor demanda en el mercado doméstico; en 1994 se registraron 954 ha sembradas, principalmente en los departamentos de Cajamarca y La Libertad (Llontop, 1999).

1. Composición de la granadilla

La granadilla está compuesta por el exocarpio o corteza dura (28,2%), el mesocarpio o corteza blanca y esponjosa (17,5%), el endocarpio o pulpa comestible (44,7%) y las semillas (8,7%) (Villamizar, 1992) (Foto 1). La fruta se considera de bajo rendimiento para consumo directo (las partes comestibles representan sólo 53,4% del peso total) y para la industria (que utiliza sólo el endocarpio). Comparado con el maracuyá (Passiflora edulis), se requieren 3 partes más de fruta para la preparación de la misma cantidad de jugo (Castro, 1997). El análisis proximal indica que la fruta posee un alto contenido de fibra y extracto no nitrogenado (E.N.N); la semilla es rica en proteína (Tabla 1). Aunque la densidad y el pH del jugo cambian según el índice de madurez de la fruta, los valores promedio son 1,067 y 4,6 g/ml, respectivamente; los ácidos encontrados en el jugo son: cítrico (10,8 meq/100 ml) y málico (0,5 meq/100 ml) (Sandoval et al., 1985).
Tabla 1. Análisis proximal del fruto de la granadilla (%)

<table>
<thead>
<tr>
<th></th>
<th>Cáscara</th>
<th>Arilo</th>
<th>Semilla</th>
<th>Jugo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad</td>
<td>13,90</td>
<td>4,22</td>
<td>10,73</td>
<td>82,74</td>
</tr>
<tr>
<td>Extracto etéreo</td>
<td>0,35</td>
<td>1,48</td>
<td>7,74</td>
<td></td>
</tr>
<tr>
<td>Fibra bruta</td>
<td>48,41</td>
<td>15,96</td>
<td>34,57</td>
<td></td>
</tr>
<tr>
<td>Proteína</td>
<td>3,79</td>
<td>4,63</td>
<td>15,22</td>
<td>1,09</td>
</tr>
<tr>
<td>Cenizas</td>
<td>4,00</td>
<td>3,98</td>
<td>2,23</td>
<td>0,87</td>
</tr>
<tr>
<td>E.N.N</td>
<td>29,55</td>
<td>69,74</td>
<td>29,51</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Sandoval et al. (1985)

El jugo tiene bajo contenido de pectina (0,24 g/100 ml), taninos (36.6 g/100 ml) y almidón (0,41 g/100 ml); posee un buen contenido de azúcares totales (13,07 g/100 ml, aunque cambia con el índice de madurez), de los cuales la mayoría son reductores (7,35 g/100 ml). El jugo no es apto para la producción de bebidas fermentadas con un contenido alcohólico mayor del 8% (Sandoval et al., 1985). La fructosa es el azúcar en mayor proporción en el jugo (5 %), seguido por la sacarosa (2,6 %) y la α-glucosa (2,5 %). Según Góngora-López y Young-Lopez (1956), citados por Leal (1990), 100 g de granadilla comestible poseen 46 calorías.

El jugo de la granadilla es una fuente importante de K (5.500 mg/100 g) y de hierro (10,8 mg/100 g). Los contenidos de niacina (3,23 mg/100 g), riboflavina (0,09 mg/100 g) y ácido ascórbico (24 mg/100 g), aunque altos en comparación con otras pasiñolras, no son suficientes para superar los requerimientos diarios en la dieta del hombre (Sandoval et al., 1985). Góngora-López y Young-López (1956), citados por Leal (1990), consideran que la granadilla es una fuente pobre de vitamina A y tiamina.
2. Usos de la granadilla

Por su exquisito sabor dulce y aromático, la granadilla es una fruta de gran aceptación para el consumo fresco; el jugo dulce y agradable se consume con las semillas. Su transformación es difícil por la fragilidad de sus semillas, que no se separan fácilmente del arilo o pulpa (Universidad de los Andes, 1994), aunque se reconoce que de ella se pueden preparar jugos, refrescos, mermeladas, nectares, jarabes, jaleas, esponjados, cócteles y helados. El fruto tiene cualidades como regulador de la presión sanguínea (Angulo, 2000) y se le han encontrado propiedades digestivas y diuréticas; su consumo es recomendado para pacientes afectados por úlceras gastrointestinales y hernia hiatal (Castro, 2001) y para niños y ancianos por su fácil digestión (Llontop, 1999). El principio activo de la planta es la pasiflorina, un alcaloide activo que se emplea en la preparación de tónicos nerviosos (Bernal, 1990), posee acción sedante antiespasmodica, induce el sueño y contrarresta el reflujo (Castro, 2001). El jugo fresco de las hojas en agua azucarada es una bebida febrífuga, muy eficaz en los casos de fiebre remitente, biliosa y tifoidea (Garcia, 1975); el jugo de los cogollos sirve como vermífugo y el fruto tierno, tomado en ayunas, sirve contra ascárides (Bernal, 1990). La infusión de las flores, tomada tres veces al día, se dice que cura la epilepsia; tomándola una semana sí y otra no (Bernal, 1990). Las hojillas de la granadilla, aplicadas tibias con mantequilla sin sal sobre la espalda, calman el dolor que proviene del trabajo material; con la infusión de la raíz, se hacen friegos en caso de golpes y caídas (Bernal, 1990). El alto contenido de fibra y extracto no nitrogenado indican que la cáscara se puede utilizar en la preparación de alimentos concentrados para animales (Sandoval et al., 1985). La flor se utiliza en perfumería, por su gran aroma (Angulo, 2000). Por la belleza del fruto, es utilizado en ornamentación. (Foto 2).

Los atributos que más valoran los consumidores europeos de las frutas exóticas, como la granadilla, son: el sabor (30%), la apariencia (25%), la accesibilidad (16%), la disponibilidad (11%) y el carácter exótico de la fruta (8%) (CCL, 2001). El ingreso y la edad constituyen los factores claves del consumo de frutas exóticas: a medida que el ingreso aumenta, el consumo es mayor; las personas entre 36 y 50 años son las principales innovadoras en el consumo.

Foto 2. Granadilla utilizada en ornamentación (Foto: Fischer)
3. Producción de granadilla en Colombia

Entre 1992 y 2000, la superficie sembrada de granadilla se incrementó a una tasa de 1,4% anual, pasando de 1.069 ha a 1.119 ha (cálculos basados en información de CCI) (Tabla 2). La reducción en el área sembrada que se presentó en Antioquia a partir de 1998, fue compensada con el ingreso de importantes áreas en los departamentos de Caldas, Huila, Quindío y Santander.

| Tabla 2. Area sembrada (ha) en granadilla, discrimi
|nada por departamentos |
|------------------------|-----------------|
| Antioquia | 550 | 590 | 790 | 757 | 70 |
| Boyacá | 3 | 7 | | | 19 |
| Caldas | | | 6 | 100 | |
| Chocó | | 57 | | | 57 |
| Cundinamarca | 20 | | 24 | | 29 |
| Huila | 6 | | | 7 | 43 |
| Quindío | 4 | 9 | 27 | 69 | 165 |
| Risaralda | 53 | 45 | 48 | 73 | 82 |
| Santander | | | 58 | | 70 |
| Valle | 433 | 477 | 416 | 569 | 556 |
| Total | 1.069 | 1.128 | 1.339 | 1.545 | 1.191 |

Cálculos propios a partir de los datos del Sistemas de Información Estratégica del Sector Agroalimentario (SIESA) de la CCI

4. Perspectivas para el desarrollo del cultivo de la granadilla en Colombia

Las 1.119 ha sembradas en el año 2000, con una producción de 14.501 t, permitieson que los productores obtuvieran ingresos por $14.417 millones (a un precio promedio al productor de $994,2/kg) y que se generarán 285.888 jornales (cerca de 953 empleos directos), considerando un uso de mano de obra promedio de 240 jornales/ha.ano. lo que expresa la importancia socio-económica que tiene el cultivo para el país.

La granadilla constituye una importante fuente de divisas para el país. Entre 1991 y 2000, las exportaciones colombianas de pasifloras (granadilla, maracuyá y curuba) crecieron en volumen a una tasa promedio de 4,9% anual y en precio 6,9% (CCI, 2001). Holanda y Alemania son los principales mercados de granadilla colombiana.
Manejo integral del cultivo de la granadilla

(25.4 y 18.1% del volumen total de la exportación nacional, respectivamente) con una tasa de crecimiento anual promedio de 26.0 y 29.4%, respectivamente, entre 1997 y 2000 (CCI, 2001). En el año 2000, las exportaciones fueron 569,6 t (Toro et al., 2002), que representan US$ 1,500,000 en divisas para el país.

Desde el punto de vista social, Llontop (1999) considera que, en el norte del Perú, es el cultivo que ha permitido a las familias rurales afrontar los costos de producción y adquirir infraestructura para el procesamiento del café, constituyéndose como el principal componente del mejoramiento del nivel de vida.

Desde el punto de vista ambiental, la granadilla, asociada con el café, ha mejorado el uso de los recursos naturales al reducir la erosión y mejorar la abundancia y la diversidad de anélidos en el suelo (Rivera y Nieto, 2002; Andrade y Morales, 2002). Al respecto, Llontop (1990) afirma que la granadilla se desarrolla en un envidiable agroecosistema, con un gran potencial biótico (flora, fauna y policultivo) y abiótico (suelo, materia orgánica y agua disponible). En consecuencia, la granadilla constituye un rubro productivo que, según Castro (2001), permite cumplir con los propósitos gubernamentales de competitividad, equidad social y sostenibilidad ambiental.

Con excepción del banano, los frutales en Colombia se caracterizan por su dispersión geográfica y por la explotación en pequeñas unidades, con restricciones tecnológicas, financieras y empresariales. La dispersión de la producción impide aprovechar las ventajas climáticas específicas de las regiones y el desarrollo de infraestructura y de mercados. La falta de mecanismos efectivos de organización de los productores favorece el negocio de los intermediarios, a costa de las utilidades de quienes hacen la inversión en los cultivos y asumen los riesgos de la producción, ya que en Colombia, solamente 3 - 4% de la producción agropecuaria está organizada a través de formas cooperativas (Henao, 1986).

La carencia de un programa sistemático de investigación contribuye a que el productor no disponga de asistencia técnica eficiente y oportuna. Según Toro et al. (2002), existe potencial para el mejoramiento tecnológico del cultivo, considerando la amplia brecha en productividad entre lotes experimentales (40 t/ha) y el promedio nacional. Con base en los datos del Sistema de Información Estratégica del Sector Agroalimentario (SIESA) de la CCI, el promedio nacional se puede estimar en 11.2 t/ha, con un incremento importante de 14% entre 1999 y 2000. Salvo el Valle del Cauca, que a partir de 1996 incrementa su productividad notablemente y se posiciona como el departamento de mayor productividad promedio en el país, la productividad del cultivo tiende a mantenerse alrededor del promedio histórico (Gráfica 1).
Gráfica 1. Productividad del cultivo de la granadilla en los cuatro departamentos de mayor experiencia productiva (1992 a 2000)

El modelo de decisión elaborado por Toro et al. (2002) para determinar los productos que reúnen las mejores condiciones para un desarrollo regional competitivo en el Valle del Cauca, teniendo en cuenta: mercados, análisis de la competencia, rentabilidad, disponibilidad de tecnología, disponibilidad agroecológica y experiencia productiva, indica que la granadilla tiene un coeficiente de competitividad relativamente alto, colocándose en el sexto lugar, después de guayaba, guanábana, naranja, aguacate y maracuyá.

Por sus características organolépticas, el potencial productivo y competitivo, la generación de empleo, la generación de divisas y el relativo posicionamiento en el mercado externo, la granadilla constituye un producto bastante promisorio, aún sin explotar. Algunas fortalezas que se pueden aprovechar de la granadilla son: su rápida cosecha (antes de un año); su larga capacidad de almacenamiento (corteza dura) que permite el transporte por vía marítima, lo que abarata costos; su potencial de procesamiento; y el potencial comercial de sus hojas, cáscaras y ramas (Universidad de los Andes, 1994).

La competencia y posición dominante de algunos países, logradas por economías de escala, desarrollos tecnológicos y alta calidad, exige que el país realice importantes innovaciones en productos, empaques y presentaciones, o que lleve a cabo un salto en competitividad derivado en una decisión estratégica del Estado colombiano y de los agentes de la cadena productiva, que reduzca los precios y asegure la cantidad, calidad y continuidad en la oferta.

Para corregir la dispersión que se presenta en la producción de granadilla, se requiere identificar conglomerados (clusters) productivos regionales, a partir de ventajas climáticas, de infraestructura y de mercado, que permitan el desarrollo de economías de escala y el aprovechamiento de externalidades. De otro lado, es fundamental transformar las actuales asociaciones de productores, con el fin de que se conviertan en instancias de presión para conseguir mejores precios, ser
escuchados en reclamaciones justas, promover y defender las normas técnicas, hacer inteligencia de mercados y conseguir insumos a precios más razonables (Toro et al., 2002). En el desarrollo de mercados y promoción se debe dar a conocer el producto, mostrar los beneficios de su consumo sobre la salud y enseñar las diferentes formas de preparación.

El posicionamiento en el mercado exige un mayor desarrollo tecnológico para producir una fruta homogénea, de la variedad que demanda el mercado (tamaño, color, forma y calidad), recomendaciones tecnológicas competitivas validadas y material vegetal certificado. Las pérdidas poscosecha (30%) se consideran altas y, aunque la fruta tiene restricciones para su transformación por la fragilidad de sus semillas y la dificultad para retirarlas del arillo o pulpa, es fundamental identificar estrategias para usos alternativos como: jugos, refrescos, mermeladas, néctares, jarabes, jaleas, esponjados, cocteles y helados.

Bibliografía

CAPITULO II

DESCRIPTOR TAXONOMÍCA Y MORFOLÓGICA DE LA GRANADILLA

1. Descripción taxonómica

La granadilla pertenece a la familia Passifloráceae (Tabla 1), que comprende 12 géneros y cerca de 500 especies de plantas herbáceas y leñosas repartidas en todo el mundo (Gutiérrez, 1984). Según Saldarriaga (1998), la granadilla pertenece a uno de los 66 géneros de Passifloráceas reportados en 1735 por el sabio Mutis en Colombia.

Etimológicamente, el término passiflora procede del latín 'passio', que quiere decir ‘Pasión de Jesucristo’ y ‘flor’, que significa ‘flores’, de ahí que algunos autores denominen la flor de las passifloras como la ‘flor de la pasión’ (Campos, 1999). Castro (2001) considera que el significado de ‘flor de la pasión’, se debe a la semejanza que encontraron los conquistadores españoles al llegar a Sur América, entre los órganos de estas plantas y los instrumentos de la Pasión de Cristo: representaron los zarcillos como los látigos; la corona floral de color morado y blanco como la corona de espinas salpicada en sangre y las cinco anteras y tres pistilos como las cinco personas que acompañaron a Cristo, como símbolo de la crucifixión.

Según Avelan et al. (s.f.) citado por Palomino y Restrepo (1991), durante la Real Expedición Botánica del Nuevo Reino de Granada, en 1865. A.L. de Juss describió 13 especies entre las cuales se encontraba la Granadilla (Passiflora ligularis). El nombre de la especie (ligularis) se debe a las glándulas, pecioladas muy alargadas y liguliformes, llamadas ligulas que recubren la base de la hoja.

Tabla 1. Clasificación botánica de la Granadilla

<table>
<thead>
<tr>
<th>Reino</th>
<th>Vegetal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subreino</td>
<td>Espermatophyta</td>
</tr>
<tr>
<td>División</td>
<td>Angiosperma</td>
</tr>
<tr>
<td>Clase</td>
<td>Dicotiledonea</td>
</tr>
<tr>
<td>Subclase</td>
<td>Archiclamydae</td>
</tr>
<tr>
<td>Orden</td>
<td>Parietales</td>
</tr>
<tr>
<td>Suborden</td>
<td>Flacurtineas</td>
</tr>
<tr>
<td>Familia</td>
<td>Passifloráceae</td>
</tr>
<tr>
<td>Género</td>
<td>Passiflora</td>
</tr>
<tr>
<td>Especie</td>
<td>Ligularis</td>
</tr>
</tbody>
</table>

Fuente: Bernal (1990)
La granadilla se conoce con este nombre en Colombia, México y Costa Rica; como “parcha” en Venezuela; “guayan” en Ecuador; “tintín” y “apincoya” en Perú (quechua); “maracuyá dulce” en España; “maracuyá doce” en Portugal; “sweet passion fruit” en países de habla inglesa; y “susse passion frucht” en países donde se habla alemán.

2. Descripción Morfológica

2.1 Raíz

La especie ligularis presenta raíces fibrosas, fasciculadas y poco profundas, con una raíz primaria de escaso crecimiento, de donde se derivan un gran número de raíces secundarias (Bernal, 1990). Agudelo y Yepes (1990) afirman que el sistema radical de la granadilla se distribuye en los primeros 50 cm de suelo, encontrándose el mayor número de raíces en los primeros 30 cm.

2.2 Tallo

La granadilla posee un tallo herbáceo, leñoso hacia la base, cilíndrico, estriado y voluble, que le da soporte a la planta y cumple con la función de almacenar agua. El tallo y las ramas presentan nudos cada 12 a 15 cm (Saldarriaga, 1998), y en cada nudo se identifican 7 estructuras (Figura 1): una hoja; dos brácteas o estípulas; dos yemas florales al interior de las brácteas; una yema vegetativa; y un zarcillo (Castro, 2001). La función de las brácteas o estípulas es proteger las dos yemas florales. El zarcillo, una estructura filamentososa en forma de espiral, tiene como función ayudar a la planta a trepar y enredarse. Tanto el tallo como las ramas primarias presentan una escasa aparición de yemas florales o pueden carecer de ellas.

Figura 1. Estructuras de la granadilla (adaptado de Saldarriaga, 1998)
2.3 Hojas

Las hojas son grandes, 8–20 cm de largo y 6–5 cm de ancho, gruesas, acorazonadas y de color verde intenso; de borde liso, enteras, alternas y con las nervaduras bien pronunciadas por el envés (Gutiérrez, 1984). Las hojas se insertan al tallo mediante un peciolo largo y grueso, el cual contiene tres pares de glándulas de 1 cm de largo aproximadamente, llamadas ligulas. Hacia las axilas de las hojas, crecen estípulas pareadas, oblongo-lanceoladas (Foto 1).

2.4 Flores

Las flores son de color violeta, vistosas y de un agradable aroma; y miden entre 7 y 10 cm de diámetro. Usualmente vienen dos en un nudo y están sostenidas por un pedúnculo axilar de 4 cm, al cual se adhieren brácteas que asemejan hojas (Gutiérrez, 1984). Los sépalos son de color blanco en el haz y verdes con márgenes blancas en el envés, de forma lanceolada y miden 4 cm de largo por 2 cm de ancho (Foto 2). Los pétalos son tubulares, blanco rosáceos y moteados con pinceladas de color azul púrpura, que forman una corola de dos series con 43 pétalos al interior y al exterior, simulando una corona (Saldarriaga, 1998). Las dos series exteriores tienen filamentos largos, cilíndricos y paulatinamente adelgazados hacia la punta, bordeados de blanco púrpura en la base inferior. Las series interiores constan de pequeños tubérculos de 2 mm de largo, blancos con manchas purpúreas. El ópérculo está ligeramente distanciado (Campos, 1999).

La flor tiene 5 estambres unidos por su base; las anteras son planas, extrosas y se unen hacia la mitad del filamento, con dehiscencia longitudinal. Los pistilos son de tres carpelos abiertos y unidos en un ovario unilocular, superoglobo, ovoide, con numerosos óvulos, estilos aplanados y divididos en tres ramas, cada uno con estigmas capitados que se alinean en forma horizontal.

Foto 1. Hoja de la granadilla Foto 2. Flor de la granadilla
2.5 Fruto

El fruto es una baya de cubierta dura, de forma casi esférica, que mide entre 7 y 8 cm de diámetro. El color del fruto cambia de verde a amarillo intenso, según el grado de madurez. Generalmente, el fruto presenta puntos blanquecinos que varían en tamaño y número según el tipo.

El fruto de la granadilla está compuesto por el epicarpo, el exocarpo o corteza dura, el mesocarpo o corteza blanca y esponjosa, el endocarpo o pulpa comestible y las semillas (Villamizar, 1992).

El epicarpo es una cubierta natural delgada de consistencia cerosa que protege el fruto de cambios bruscos de temperatura y le da la apariencia lustrosa que tiene; la remoción de esta cera favorece una rápida oxidación del fruto (Saldarriaga, 1998).

El exocarpo, formado de varias capas de células cortas y de paredes muy gruesas, le da solidez y favorece el transporte del fruto, aunque mide menos de 1 mm de espesor. El fruto presenta 6 carpelos que se unen formando cicatrices y se observan en la cáscara del fruto, la cual es quebradiza.

El mesocarpo es blanco, esponjoso, seco, de 5 mm de grueso, y favorece el almacenamiento.

El endocarpo es una fina membrana blanca que alberga un promedio de 200 a 250 semillas envueltas en un arilo grisáceo, translúcido, mucilaginoso y acidulado que constituye la parte comestible (Gutiérrez, 1984). Las semillas son de color negro, planas, angostas, en forma de escudo y presentan pequeñas zonas hundidas; son relativamente pequeñas (3,5 mm de longitud) y de testa dura (Polanía, 1983). Están rodeadas de un arilo que es la parte comestible, el cual se compone de parénquima que contiene azúcares y principios ácidos que determinan un sabor muy agradable.

3. Recursos genéticos de la granadilla

La distribución geográfica de la familia Passifloraceae es casi exclusivamente tropical y subtropical; la mayoría de las especies habitan en África y Madagascar y sólo 4 de sus 22 géneros se encuentran en América. El género Passiflora, no obstante, es casi endémico en el nuevo mundo; es el más grande de la familia, con cerca de 450 especies. Colombia es el país que mayor número de especies de pasifloras posee en el mundo y ello se debe a la gran diversidad de habitats y climas.

Las especies de pasifloras, a su vez, se clasifican en 22 subgéneros, según su morfología floral. Mientras todas las especies son más o menos importantes en la floricultura por las formas exóticas de las flores y hojas, sólo dos subgéneros son importantes por el cultivo de sus frutos: el subgénero Tacsonia, (las curubas) y el
subgénero *Passiflora* (las granadillas). Las diferentes especies de *passifloras* poseen número haploide de cromosomas de 6, 9, 10, 11, 12, y 24; los de los subgéneros *tacsonia* y *passiflora* son todas n=9, lo que en principio, indica que la hibridación es un método factible para su mejoramiento.

A diferencia de las especies de *tacsonia*, las 136 especies del subgénero *passiflora* se distribuyen a través de América Latina, con unas pocas especies al sur de los Estados Unidos, desde el nivel del mar hasta alturas de más de 2.500 m. La incompatibilidad genética del género *passiflora* no es muy fuerte y muchos híbridos se podrían formar aplicando una técnica adecuada, aún entre las especies no estrechamente relacionadas.

Las más importantes especies que se cultivan del género *passiflora* son: maracuyá (*Passiflora edulis* var. *flavicarpa*), curuba de castilla (*Passiflora mollissima*), curuba morada (*Passiflora edulis* var. *edulis*) y badea (*Passiflora quadrangularis*).

Debido a que la especie es de polinización cruzada, se presenta una alta variabilidad genética que impide definir variedades en el estricto sentido de la palabra (Bernal, 1990). Los cruzamientos naturales han permitido el desarrollo de distintos tipos de granadilla que se conocen actualmente en los mercados (Saldarriaga, 1989). Los distintos tipos se clasifican según el tamaño, la forma y la dureza de la corteza.

- Según el tamaño: grande (>100 g), mediana (entre 70 y 100 g) y pequeña (<70 g)
- Según la forma: completamente redonda, redonda-achatada, alargada-oval y alargada aperada
- Según la corteza: gruesa, media y delgada.

Los productores de granadilla utilizan con preferencia un sistema de clasificación relacionado con la procedencia o sitio de cultivo de la semilla (Fotos 3 y 4).

- **Criolla**: es una fruta grande, redonda y de exocarpio y mesocarpio gruesos; posee un peso promedio de 124 g pero con muy bajo contenido de pulpa; se ha observado en la zona más alta de producción en el municipio de Aguadas.
- **Pecosa**: es una fruta mediana con abundantes puntos blanquecinos grandes, redonda-achatada, con exocarpio y mesocarpio medios; pesa 110 g y es relativamente pesada en relación con su tamaño; se ha observado como cultivo en el Norte del Valle.
- **Valluna**: es un tipo de fruta mediana, alargada-oval, con exocarpio y mesocarpio delgados; pesa 120 g y tiene alto contenido de pulpa; es la más común en el Norte del Valle.
- **Urrao**: es una fruta grande, redonda-achatada, de corteza gruesa y con un contenido de pulpa menor que la valluna.
Foto 3. Aspecto externo de 3 tipos de granadilla: Criolla, Pecosa y Valluna

Foto 4. Aspecto interno de 3 tipos de granadilla: Criolla, Pecosa y Valluna
Bibliografía

CAPITULO III

ASPECTOS ECOFISIOLÓGICOS DEL CULTIVO DE LA GRANADILLA

La ecofisiología estudia el crecimiento y desarrollo de las plantas en diferentes ambientes, aplicando los conocimientos de la fisiología para interpretar, entender su comportamiento y plantear soluciones para su establecimiento frente a factores adversos.

1. Oferta ambiental

Los factores medioambientales de mayor importancia para el desarrollo y producción de los cultivos son: temperatura, radiación solar y luminosidad, altitud, precipitación, humedad relativa y vientos.

1.1 Temperatura

En los cultivos de granadilla, las temperaturas mayores a 20°C de una parte ocasionan un mayor estrés hídrico, aumentando considerablemente las necesidades de agua y de fertilizante; y de otra, acortan la duración del ciclo de vida del cultivo (Castro, 2001). Se reporta que la aparición y severidad de la enfermedad denominada secadera, es mucho más grave en franjas altimétricas inferiores a los 1,600 metros y temperaturas promedio superiores a 20°C (Castro, 2001). Temperaturas inferiores a los 18°C ofrecen condiciones para una mayor durabilidad de la planta, pero con un crecimiento lento y baja producción. Temperaturas menores a 10-12°C disminuyen la fecundación e incrementan los abortos floriales entre 90 y 95%; además, ocasionan cuarteamiento de los frutos nuevos.

Los cambios bruscos de temperatura entre el día y la noche ocasionan cuarteamiento de los frutos ya desarrollados. Zonas con temperaturas muy bajas (con presencia de heladas), vientos fuertes o granizo no son recomendables para el cultivo de la granadilla, pues ocasionan daños en frutos y caída de flores.

Según Fischer (1990), la temperatura afecta de manera indirecta el comportamiento de los agentes polinizadores; temperaturas entre 20-22°C fomentan el vuelo de las abejas, aumentando el número de flores polinizadas, aspecto de vital importancia en la granadilla.
1.2 Radiación solar y luminosidad

La duración, intensidad y calidad de la luz están dentro de los factores climáticos más importantes que determinan la calidad del fruto. La radiación solar, por su función en la fotosíntesis, además de influir sobre el tamaño y la calidad del fruto, es importante en la coloración y en el contenido de sólidos solubles (índice refractométrico) que presente el fruto en su madurez (Fischer, 2000). La luminosidad influye sobre el desarrollo de la granadilla, principalmente por la superficie del dosel expuesta, interviniendo en procesos como la diferenciación de primordios florales, la floración y la coloración del fruto, por la formación de azúcares y pigmentos, siendo indispensable en la síntesis de antocianinas.

1.3 Altitud

El incremento de la altitud determina varias modificaciones en las condiciones climáticas: la temperatura aumenta 0.6 °C por cada 100 m de elevación; la precipitación disminuye a partir de los 1.300-1.540 m; la radiación, la luz ultravioleta visible y el infrarrojo se aumentan; la presión atmosférica se reduce; y la intensidad de los vientos se aumenta (Fischer, 2000). A mayor altitud, las plantas crecen más lento y presentan entrenudos más cortos y hojas más pequeñas y gruesas para filtrar la luz ultravioleta; la radiación solar es más alta y la calidad del fruto, referida a la coloración y al aspecto sanitario (presenta menos daños por fisiopatías), es superior.

Con respecto al factor altitudinal para la granadilla, alturas menores de 1.500 msnm causan poca viabilidad del polen. A alturas inferiores a 1.700 msnm, es mayor la incidencia de los insectos plaga, y el tamaño de los frutos disminuye, obteniéndose un porcentaje superior al 50% de frutas de segunda calidad, lo que reduce significativamente la rentabilidad del cultivo. En las plantaciones establecidas a alturas superiores a los 2.500 m, si bien se presentan frutos más grandes y el ciclo de producción es más largo, existe una mayor incidencia de enfermedades fungosas como Nectria y Botrytis. A esta altitud también se disminuye la población de agentes polinizadores naturales (Castro, 2001).

1.4 Precipitación

El agua es el principal constituyente del fruto (80-95%) y las funciones relacionadas con la obtención de frutos de calidad, como la actividad fotosintética, el transporte y metabolismo de las sustancias (azúcares, ácidos), la estructura (estabilidad, elasticidad) y turgencia (forma y tamaño del fruto), están íntimamente relacionadas con su suministro.

En las especies frutícolas como la granadilla, en las que la floración y la fructificación se presentan durante todo el año, la precipitación debe estar bien distribuida en todos los meses, especialmente donde no hay facilidad para el suministro de riego adicional. Cuando falta el agua en fases críticas, como brotación de yemas florales, fecundación, cuajado y llenado, los frutos se quedan pequeños.
o se caen. El estado de mayor demanda de agua por el fruto es durante su llenado; en la maduración se requiere en menor proporción. Un suministro equilibrado de agua asegura un contenido adecuado de carbohidratos y ácidos en el fruto al momento de la madurez y menor velocidad de degradación durante la poscosecha.

Durante el período de floración, la lluvia debe ser mínima, ya que cuando el polen se moja, se revienta y pierde su función. En los climas húmedos y lluviosos se puede presentar ablandamiento de la corteza del fruto.

1.5 Humedad relativa

En general, la humedad relativa influye sobre la temperatura del aire, la presencia de vientos, nieblas y llovizna, disminuye la insolación, dificulta la transpiración, crea un ambiente favorable al desarrollo de enfermedades, y disminuye el efecto de las aspersiones de agroquímicos. En casi todas las especies frutícolas, una humedad relativa entre 60-80% es recomendable para los procesos de polinización y para regular la transpiración.

Garcés y Saldarriaga (s.f.) recomiendan para la granadilla una humedad relativa del 80%, para favorecer la viabilidad del polen y la receptividad de factores importantes para la polinización y la fecundación alta y uniforme. Los efectos de una baja humedad relativa (<40%), acompañada de vientos calurosos, se manifiestan en marchitez de flores, deshidratación y disminución de la fotosíntesis por el cierre de estomas y la muerte de brotes tiernos.

1.6 Vientos

Los vientos excesivos en el cultivo de la granadilla afectan en forma indirecta el proceso de floración, ya que las especies encargadas de esta labor (abejas y abejorros), se desplazan mejor en ambientes con poco viento. También pueden ocasionar daños mecánicos a las flores, pudiendo desecar prematuramente el estigma y el estilo, reduciendo el desarrollo del tubo polínico y la germinación del polen. En ambientes en calma se obtiene un mejor cuajamiento de los frutos. Los vientos secos con temperaturas altas producen aumentos en las tasas de transpiración, desecación de las hojas y disminución de los índices de crecimiento.
2. Cualidades físicas del suelo para el cultivo de la granadilla

Las características físicas del suelo influyen directamente en el desarrollo del cultivo, algunas de las cuales se manifiestan como limitantes: pendiente, profundidad efectiva, perfil del suelo, textura, estructura y drenaje natural.

La profundidad efectiva del suelo es aquella capa de terreno en sentido vertical que puede ser ocupada por las raíces de la planta y utilizada eficientemente por las mismas. El sistema radical de la granadilla se desempeña bien en los primeros 20 cm de profundidad, en texturas livianas y drenajes adecuados. Para esta determinación es recomendable que se hagan calificaciones en sitios representativos de los terrenos a cultivar, que permitan conocer las características del perfil y prever posibles inconvenientes en el cultivo, tales como encharcamientos, presencia de horizontes endurecidos, horizontes limitados, niveles freáticos altos y presencia de salinas, entre otros (Miranda, 2001).

La textura de los suelos para el cultivo de la granadilla debe ser liviana, franca, franca-arenosa o franca-arcillosa, ya que en éstas se presenta un mejor crecimiento y desarrollo del sistema radical; también deben ser bien drenados.

3. Requisitos de uso de la tierra para la granadilla

Las cualidades de la tierra se refieren a las condiciones de aireación del suelo, de enraizamiento del cultivo en términos de la profundidad efectiva, acidez y textura del suelo, y de algunas variables climáticas condicionantes del comportamiento del cultivo.

Los requisitos de uso de la tierra están relacionados con la fisiología de los cultivos y con sus requerimientos; con base en estos factores, las tierras se clasifican por su aptitud en cuatro categorías:

- Categoría 1. Apta
- Categoría 2. Moderadamente apta
- Categoría 3. Marginal
- Categoría 4. No apta

Esta clasificación se hace con base en la reducción de los rendimientos causada por deficiencias de los requisitos de uso de la tierra y por los costos adicionales que se necesitan para contrarrestar la deficiencia.

El comportamiento de la granadilla está sujeto a los requerimientos fisiológicos del cultivo, a la tecnología utilizada en los diferentes sistemas productivos y a aspectos como la duración y sostenibilidad del ciclo productivo a través del tiempo. Del comportamiento de estos tres requisitos y de las interacciones entre ellos va a depender su desarrollo óptimo (Tabla 1).
Tabla 1. Propuesta de modelo para identificar los requisitos de uso de la tierra para el cultivo de la granadilla en Colombia

<table>
<thead>
<tr>
<th>Requisitos del cultivo</th>
<th>Clasificación por factores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cualidad de la tierra</td>
<td>unidad</td>
</tr>
<tr>
<td>Aireación del suelo</td>
<td>Clase de drenaje del suelo</td>
</tr>
<tr>
<td>Condicion es de enraizamiento</td>
<td>Profundidad efectiva</td>
</tr>
<tr>
<td>Niveles de acidez</td>
<td>Reacción del suelo</td>
</tr>
<tr>
<td>Textura del suelo</td>
<td>Componentes arcilla, limo y arena</td>
</tr>
<tr>
<td>Condiciones climáticas</td>
<td>msnm</td>
</tr>
<tr>
<td>Tempefaratura</td>
<td>°C</td>
</tr>
<tr>
<td>Humedad relativa</td>
<td>%</td>
</tr>
<tr>
<td>Precipitación</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adaptación de la metodología de evaluación de tierras propuesta por la FAO.

4. Requerimientos hídricos

En la determinación de las necesidades de agua por los cultivos hay que conside rar el clima, el tipo de cultivo, la intensidad y el comportamiento del cultivo, el medio ambiente, los suelos, la humedad, su fertilidad y los métodos de cultivo y de riego.

Los requerimientos hídricos dependen de: la evapotraspiración (Eto), el uso consuntivo y la evapotranspiración del cultivo (ET) (Doorenbos y Pruitt, 1977). Agudelo y Yepes (1990) calcularon el uso consuntivo de la granadilla utilizando un sistema de riego por microaspersión en el municipio de Urrao (Antioquia), a 1.850 msnm, 1.400 mm de precipitación y perteneciente a la zona de vida bosque húmedo montano bajo bh mb (Tabla 2).
Tabla 2. Determinación del uso consuntivo para el cultivo de granadilla en la zona de Urrao (Antioquia)

<table>
<thead>
<tr>
<th>Coeficiente de cultivo (Kc)</th>
<th>Uso consuntivo en campo (mm)</th>
<th>Uso consuntivo calculado (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>0.9</td>
<td>2.7-2.9</td>
<td>3.2</td>
</tr>
<tr>
<td>1.2</td>
<td>3.7-4.8</td>
<td>3.7</td>
</tr>
<tr>
<td>Promedio</td>
<td>3.5</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Fuente: Agudelo y Yepes (1990)

Los coeficientes de cultivo varían entre 0.7 y 0.9 en los periodos de mayor demanda y 1.2 en los de menor demanda, con un valor medio de 0.9. Esta información es válida para zonas con periodos de invierno entre la primera quincena de abril y finales de junio, y desde la primera semana de septiembre hasta la primera quincena de noviembre, y con periodos secos desde la segunda quincena de noviembre hasta la primera semana de marzo.

Es importante que estos valores de referencia sean calibrados por los técnicos de las diferentes zonas, de acuerdo con el estado de desarrollo del cultivo, considerando que las épocas de mayor demanda corresponden a las etapas de formación de botones florales y de cuajamiento del fruto.

5. Fenología de la granadilla

El estudio de los eventos periódicos naturales involucrados en la vida de las plantas se denomina fenología (Volpe, 1992; Villalpando y Ruiz, 1993), palabra que deriva del griego phaino que significa ‘manifestar’ y logos ‘tratado’. En un proceso de crecimiento, la aparición, transformación o desaparición rápida de los órganos vegetales en el tiempo se llama ‘fase’ (Torres, 1995) y el período entre distintas fases es llamado ‘estado fenológico’ (Villalpando y Ruiz, 1993). Una etapa fenológica está delimitada por dos fases sucesivas.

Las observaciones sobre el comportamiento de las etapas de desarrollo del cultivo de la granadilla permitieron construir una curva general de la fenología del cultivo, en una zona apta para su desarrollo (Figura 1).

La etapa vegetativa 0 (V0) corresponde a la germinación de la semilla y su duración se estima entre 15 y 20 días, dependiendo de la calidad de la semilla, del sustrato de siembra y del manejo del riego (Foto 1).

La etapa vegetativa 1 (V1.1) corresponde a la emergencia de la plántula y ocurre en las primeras tres semanas después de la siembra de la semilla; es una etapa totalmente desarrollada en el vivero y en ella se hace el primer transplante a bolsa cuando se ha utilizado el almácigo (Foto 2).
La etapa vegetativa 2 (V1.2) corresponde a la fase del transplante al sitio definitivo y sucede entre 65 y 75 días después de la siembra de la semilla. En esta etapa se realiza la eliminación de chupones basales cuando éstos se presentan. La labor más importante es el suministro del riego. Algunos productores incluyen prácticas adicionales, como la nutrición foliar o la inoculación con hongos micorrizógenos (Foto 3).

La etapa vegetativa 3 (V1.3) se denomina de desarrollo totalmente vegetativo, debido a que la planta, durante los próximos 100-120 días, va a producir únicamente estructuras vegetativas, principalmente hojas, chupones y zarcillos (Foto 4).

La etapa vegetativa 4 (V1.4) se puede considerar como de transición entre la fase vegetativa y la fase reproductiva; termina cuando la mayoría de las plantas empiezan a formar los primeros botones florales (Foto 5).

La etapa reproductiva 1 (R1.1) corresponde a la floración propiamente dicha, ya que más del 50% de las plantas del cultivo presentan flores en cartuch y flores abiertas (Foto 6).

Trabajos realizados por Girón (1990) demostraron que en granadilla se presenta el fenómeno de dicogamia en las flores; la viabilidad del polen y la receptividad de los estigmas indican que en granadilla prevalece el fenómeno de protandria. Dos horas antes de la apertura floral, el polen ya es viable, alcanzando su máximo porcentaje en el momento de la apertura. El gineceo por su parte, dos horas antes de la apertura floral, no muestra ninguna receptividad. El máximo porcentaje de receptividad se alcanzó entre dos y cuatro horas después de la apertura floral. El rango de duración de la anthesis fue homogéneo dentro de 10 a 30 minutos. La duración de las flores abiertas oscila entre 30-36 horas; en esta fase se presentan los procesos de polinización y fecundación. A partir de éste momento la flor se cierra e inicia su proceso de marchitez.

La etapa reproductiva 2 (R1.2) es la etapa denominada de formación del fruto y tiene una duración aproximada de 50-60 días en condiciones agroclimáticas normales. En esta etapa se presenta una distribución permanente de fotoasimilados por parte de las estructuras foliares hacia los frutos formados (Foto 7).

La fase denominada reproductiva (R1.3) corresponde a los procesos de llenado y maduración del fruto y tiene una duración entre 20 y 25 días (Foto 8).

En condiciones agroclimáticas normales, el cultivo de la granadilla se comporta como semipermanente y presenta una superposición de fases vegetativas y reproductivas. Durante el segundo ciclo se denominarán V2.1, V2.2, V2.3, V2.4, R2.1, R2.2, R2.3, y así sucesivamente en el tercer ciclo.
Figura 1. Etapas fenológicas del cultivo de la granadilla en zonas productoras aptas

V0: Germinación
V1.1: Emergencia
V1.2: Transplante
V1.3: Desarrollo totalmente vegetativo
V1.4: Prefloración
R1.1: Floración
R1.2: Formación del fruto
R1.3: Llenado y maduración
Foto 5. Etapa vegetativa V1.4

Foto 6. Etapa reproductiva R1.1

Foto 7. Etapa reproductiva R1.2

Foto 8. Etapa reproductiva R1.3
6. Naturaleza de la polinización y la fecundación de la granadilla

La granadilla posee un sistema reproductor alógamo, es decir, que depende de la intervención de un agente polinizador para su fecundación. La alogamia se favorece por la presencia de factores tales como la longistílla, la protandria, la vistosidad del color y el momento de apertura floral. Este último factor se relaciona directamente con los máximos picos de viabilidad del polen y receptividad del estigma, en las horas en que se observa a los insectos visitar las flores para el proceso de polinización.

Las flores de la granadilla se presentan en parejas, las cuales maduran asincrónicamente, es decir que no abren al mismo tiempo (Foto 9). La apertura floral se inicia a las 1:50 a.m. con la separación del periantio y la aparición de los filamentos de la corona. Pasados 10 minutos, las anteras, que inicialmente están en posición introrsa, empiezan a girar de tal forma que una hora después están en posición extrorsa. Al mismo tiempo, los estilos comienzan a separarse, situando los estigmas a una distancia de 1 a 5 cm por encima de las anteras. Entretanto, los filamentos de la corona se van separando lentamente hasta quedar en posición oblicua. A las 3 a.m. los pétalos y los sépalos se disponen horizontalmente para continuar un movimiento hacia el receptáculo floral, adoptando finalmente una posición paralela a este (Girón, 1990).

Foto 9. Apertura floral asincrónica de la granadilla
Desde las 4 a.m., la flor está completamente abierta y empieza a exhalar un olor dulce y fuerte que se mantiene hasta las 2 p.m. Entre las 8 y las 10 a.m. los estigmas ya están muy cerca de las anteras, pero sin tocarlas. Seis horas después, los estilos, las partes del periantio y los filamentos de la corona inician el retorno a la posición inicial. A las 2 a.m. del día siguiente, la flor presenta una disposición similar a la que tenía en el botón floral (Girón, 1990). Los estigmas son receptivos cuando se curvan hacia arriba; esto generalmente ocurre entre las 9:00 a.m. y las 3:00 p.m. La fecundación se realiza ocho a nueve horas después de la polinización. El desarrollo del fruto se hace evidente 24 horas después de la fecundación (Garcés y Saldarriaga, s.f.).

La flor de la granadilla se caracteriza por su gran vistosidad, característica que influye notoriamente en la presencia de insectos que contribuyen a su polinización; los insectos, mientras la flor no abra, no manifiestan ningún interés de posarse sobre ella. Las flores poseen fragancias y estructuras elaboradas que atraen a los polinizadores hacia el nectario de la flor, el cual está cubierto por una membrana, el opérculo, que funciona como una tapa. El opérculo limita la provisión de néctar a aquellas abejas fuertes con capacidad para retirar la membrana del nectario y suficientemente grandes para tocar las anteras y el estigma de la flor (Girón, 1990).

Los polinizadores más comúnmente relacionados con la granadilla son: Apis mellifera, llamada abeja mielera; Epicharis cf. rústica, un abejorro negro con vellosidades amarillas en las patas posteriores; y Xylocopa sp. un abejorro de gran tamaño desprovisto de vellosidad en la parte superior del abdomen (Foto 10 - 11).
Xylocopa es la especie más eficiente para realizar la labor de polinización. El abe-
joorro se dirige directamente a la flor posándose en el extremo de la corona, para
ascender luego a la base del androginóforo; introduce sus partes bucales a través
del ópérculo, alcanzando el nectarario. Mientras extrae el néctar, da la vuelta a la
flor agarrando fuertemente los filamentos de la corona con sus patas. Durante
este movimiento, la parte dorsal del tórax se pone en contacto con las anteras,
impregnándose de polen, que posteriormente deja en los estigmas de otras flores.

La abeja del género Trigona sp. (tierrera) y una avispa de la familia Scoliidae,
esporádicamente visitan las flores en busca de néctar pero no actúan como
polinizadoras. Al extraer el néctar, las abejas se sitúan de tal forma que con el
extremo dorsal de su abdomen tocan las anteras impregnándose de polen, pero por
su tamaño, difícilmente tocan el estigma, haciéndolo sólo por casualidad. Las abe-
jas no sólo toman néctar, sino que también colectan polen en grandes cantidades,
por lo cual se considera su actividad como un inconveniente para el cultivo. Ade-
mas, la abeja trigona se ha encontrado raspando y dañando estructuras florales
(Girón, 1990).

Bibliografía

Agudelo L, Yepes L. Determinación de los requerimientos de agua y de riego de la
Granadilla (Passiflora ligularis Juss) en Urrao, Antioquia. Tesis, Facultad de
Ciencias ARivera B., Miranda D., Ávila L., Nieto A. gropecuarias. Universidad
Nacional de Colombia, Medellín, 1990. 70p.

Castro LE. Guía básica para el establecimiento y mantenimiento del cultivo de la
granadilla (Passiflora ligularis), Bogotá, ASOHOFRUCOL. Fondo Nacional de

Doorenbos J, Pruitt, WO. Las necesidades de los cultivos. Estudio FAO: Riego y

Fischer G. Ecofisiología en frutales de clima frío moderado. En: III Seminario de
Frutales de Clima Frío Moderado, Manizales, CDTF, 2000; 51-59.

Fischer G. Ecophysiological aspects of fruit growing in tropical highlands. Acta

Garcés OJ, Saldarriaga GR. El cultivo de la Granadilla. Urrao, Cooperativa de
Productores de Urrao, Gráficas Ltda, (s.l.). 32p.

Girón M. Biología floral de dos especies de passifloras. en: Memorias I Simposio
Internacional de Passifloras. Palmira, Colombia, 1990; 89-95.

Miranda, D. Manejo de frutales tropicales de clima cálido y medio. Notas de la
asignatura. Universidad Nacional de Colombia, Facultad de agronomía sede

Villalpando J, Ruiz A. Observaciones agrometeorológicas y su uso en la agricultura.

CAPITULO IV

PROPAGACIÓN DE LA GRANADILLA

La propagación de la granadilla se puede realizar por métodos asexuales o vegetativos y por métodos sexuales o por semilla.

Por el método de propagación vegetativa se obtienen plantas en más corto tiempo, con características genéticas iguales a las de las plantas madres, con alta uniformidad del cultivo, pero de menor longevidad que las provenientes de semilla, debido a la deficiente conformación radicular (Polania, 1983; Bernal, 1990). Sobre métodos de propagación asexual en granadilla existe escasa información y poca disponibilidad de material certificado.

Los métodos de reproducción sexual permiten obtener plantas más vigorosas, con mejor formación radicular y mayor vida productiva, comparadas con aquellas propagadas asexualmente. La propagación sexual o por semilla es el método más utilizado por los cultivadores de granadilla, por los bajos costos y la facilidad para conseguir el material, pero la práctica de intercambiar material vegetal para la siembra facilita el transporte de patógenos de un sitio a otro (Bernal y Tamayo, 1999).

1. Propagación asexual

Los métodos de propagación asexual o vegetativa conocidos tradicionalmente son por estaca y por injerto, pero recientemente se adelantan estudios para la propagación "In-vitro" (Castro, 1997). La propagación por estacas es la forma más común de propagación vegetativa, aunque ha presentado serias restricciones por la dificultad de enraizamiento. El sistema por injerto tiene ventajas comparativas frente al método anterior, ya que favorece el uso de variedades resistentes a enfermedades o a ciertas condiciones climáticas adversas.

1.1 Propagación por estacas

Las estacas a utilizar deben proceder de plantaciones de 2 años de establecidas y ser seleccionadas de diferentes plantas que presenten un buen desarrollo, vigor, alta producción y buen estado fitosanitario, con el fin de conservar estas características (Bernal, 1990). Las estacas para la propagación deben proceder de ramas maduras, medianamente lignificadas, de 30 a 40 cm de longitud, con 3 ó 4 yemas vegetativas sanas, bien formadas, y entrenudos no muy largos (Castro, 2001). El corte debe hacerse con tijeras podadoras, el inferior en forma horizontal, 3 ó 4 cm
por debajo de una yema y el superior oblicuo, 3 ó 4 cm por encima de otra (Bernal, 1990).

Las estacas se deben desinfectar en una solución que contenga fungicida y tratarse con hormonas de enraizamiento. Ruiz (2001), utilizando estacas basales de granadilla sumergidas en Acido Naftalen Acético (ANA) 150 ppm y adicionando Bencil Amino Purina (BAP) 250 ppm, obtuvo enraizamientos hasta del 50%. Castro (2001) menciona que la inmersión en una solución de Acido indolbutírico (AIB), en concentraciones de 2.000 a 5.000 ppm durante 5 segundos, asegura un alto porcentaje de prendimiento.

La siembra de las estacas debe hacerse antes de 48 horas de haberlas extraído de la planta madre, para evitar su deshidratación (Bernal, 1990). La siembra se hace en bolsas de polietileno (tipo cafetera) con un suelo previamente desinfectado, a una profundidad de 4 ó 5 cm, ajustando la estaca en la base, de manera vertical y con abundante riego. La siembra también puede realizarse en semilleros con una mezcla de suelo y arena, a una distancia de 10 cm y siguiendo las mismas prácticas utilizadas en la siembra en bolsas (Polania, 1983). Las estacas deben permanecer bajo la sombra durante los primeros días (Comisión Nacional de Fruticultura, 1996).

Las plántulas estarán listas para ser llevadas al campo, cuando tengan una altura entre 40 y 50 cm aproximadamente, 50 ó 60 días después de la siembra (Bernal, 1990).

1.2 Propagación por injerto

Holguín y Posada (1990) encontraron tres especies silvestres con resistencia a la ‘secadera’ (Nectria haematococca Merc.), enfermedad que constituye actualmente la mayor limitante del cultivo: Passiflora maliformis L. var.pubescens; Passiflora ambigua Hensl; y Passiflora serrulata Jacq. A pesar de que P. maliformis es prácticamente inmune al hongo, no se recomienda como patrón útil para P. ligularis, debido a la alta susceptibilidad que presenta a nemátodos del género Meloidogyne (Bernal, 2001). P. ambigua es altamente resistente al patógeno, es longeva (dura de 25 a 30 años), rústica y de un excelente vigor de planta, características que la convierten en la especie más promisoria para programas de mejoramiento utilizando como patrón (Holguín y Posada, 1990). Aunque P. serrulata también es resistente a ‘secadera’, es una especie que proviene de tierras muy calientes y secas, lo que generaría dificultades de adaptación en las condiciones agroecológicas en que se cultiva la granadilla. Con el fin de superar limitaciones climáticas, se adelantan procesos de investigación injertando la granadilla sobre un patrón de maracuyá (Passiflora edulis) (Comisión Nacional de Fruticultura, 1996). En el sistema de propagación por injerto se utilizan métodos de púa en hendidura, púa terminal y de yema.
2. Reproducción sexual

Para reducir el riesgo de transportar patógenos, es recomendable producir el material de siembra en la propia finca. Cuando no se dispone de material adecuado en la finca, se deben recolectar los frutos de un cultivo establecido en una zona con condiciones agroclimáticas similares al sitio donde se va a localizar el nuevo cultivo. En la selección de los frutos de los cuales se va a extraer la semilla se debe tener en cuenta que la plantación no haya presentado problemas fitosanitarios severos y que haya demostrado buen rendimiento, y que los frutos sean sanos, completamente maduros, de buen color, tamaño, peso y sin daños mecánicos (Castro, 2001).

2.1 Extracción y preparación de la semilla

La viabilidad de las semillas de granadilla es mayor cuando se extraen mediante la técnica de fermentación, comparada con el método de extracción mecánica o despulpado de frutos (Caro, 1992).

Para extraer la semilla se recomienda seguir los siguientes pasos:

1. Extraer la pulpa de los frutos seleccionados, verter las semillas en un recipiente plástico o de vidrio, y dejar fermentar en el mismo jugo durante 48 horas. El sitio en el cual se colocuen a fermentar debe ser aireado y a la sombra. El recipiente debe protegerse para evitar la contaminación por insectos (Castro, 2001).

2. Una vez fermentada la pulpa, se lava en un colador con abundante agua hasta que el mucilago sea removido completamente; aquellas semillas que floten deben ser eliminadas ya que no son viables.

3. Las semillas se colocan sobre papel absorbente y se dejan secar a la sombra durante 24 – 48 horas: aquellas semillas demasiado pequeñas o deformes se deben eliminar.

4. Si las semillas se van a almacenar se les debe aplicar un fungicida que las proteja contra el ataque de hongos (Angulo, 2000); el extracto de valeriana también actúa eficazmente en la protección de las semillas (Castro, 2001).

Las semillas almacenadas en nevera a 4°C con una humedad relativa del 75% y empacadas en bolsas de papel plástico o aluminio, pueden conservarse hasta por un año, alcanzando porcentajes de germinación superiores al 50% (Comisión Nacional de Fruticultura, 1996; Bernal, 1990). Sin embargo, Castro (2001) sostiene que no es aconsejable un almacenamiento por más de 60 días, ya que las semillas pierden su viabilidad.

2.2 Semilleros y almácigos

La primera etapa de semillero y almácigo es fundamental para el éxito futuro del cultivo, razón por la cual requiere especial cuidado y atención. Los semilleros y
almácigos se deben establecer fuera del cultivo de granadilla, para evitar que las plagas y enfermedades afecten las plántulas que van a sembrarse en el próximo cultivo (Tamayo y Morales, 1999). Tanto el semillero como el almácigo deben ubicarse cerca de la casa, donde haya una buena disponibilidad de agua, buena aireación, iluminación, fácil acceso y acarreo cercano al sitio definitivo (Castro, 2001).

Los semilleros pueden construirse en adobes sobre el suelo o en bandejas plásticas, cuando se van a sembrar pocas plántulas (Tamayo y Morales, 1999). Los almácigos se deben colocar en soportes, para evitar que las raíces entren en contacto con el suelo y se reduzcan los ataques de insectos y enfermedades (Castro, 2001). Los semilleros y almácigos se construyen con un ancho máximo de 1 m y la longitud depende del área a sembrar y de la disponibilidad de terreno.

Para la preparación del sustrato que se va a utilizar en semilleros y almácigos, se recomienda la mezcla de tierra, arena y materia orgánica, con el fin de obtener plantas vigorosas en el menor tiempo posible (Cardona y Bernal, 1993). Tamayo y Morales (1999) recomiendan para el germinador una parte de tierra por una de arena y para el almácigo 4 partes de tierra, 2 de arena y una de materia orgánica. La tierra para el almácigo debe proceder de un lote que no haya sido cultivado antes con granadilla; la fuente de materia orgánica debe estar bien descompuesta para evitar que se quemen las plántulas y la arena debe estar lavada.

Las enfermedades en los semilleros y almácigos son causadas por organismos que normalmente habitan en el suelo, al igual que algunas plagas y la gran mayoría de las malezas, razón por la cual, el suelo debe desinfectarse.

El tratamiento químico se realiza con Dazomet (Basamid), humedeciendo el suelo con anterioridad para garantizar el efecto del producto. Luego, se espolvorea el suelo con 40 a 60 g/m² de producto comercial. El suelo se revuelve, se mezcla bien con el producto y se tapa con plástico durante 10 días; transcurrido este tiempo, el suelo se destapa, se revuelve y se deja destapado durante 15 días, para proceder a utilizarlo en el semillero o para llenar las bolsas del almácigo (Castro, 2001).

El tratamiento físico mediante solarización húmeda, consiste en colocar el suelo en eras de 10 a 20 cm de alto por 1 m de ancho y el largo que se requiera. Luego se humedece a capacidad de campo y se cubre con plástico transparente calibre 2 ó 4, sellando toda la era. Se debe ubicar en un sitio donde se garantice exposición solar constante. El suelo debe permanecer con el plástico durante 20 días en épocas de verano y 30 días en épocas de invierno. El suelo a tratar se debe colocar sobre un plástico para evitar el contacto con el piso y la pérdida de humedad del suelo. La solarización húmeda, además de controlar malezas, insectos y hongos dañinos presentes en el suelo, favorece la presencia de hongos benéficos como Trichoderma sp. (Tamayo, 1999).
El uso de agua hirviendo es otra alternativa para la desinfección del suelo del semillero (Comisión Nacional de Fruticultura, 1996).

La siembra de las semillas se puede realizar directamente en bolsa o en semillero (Bernal, 1990). Independiente del método, las semillas se deben remojar en agua durante 24 horas antes de la siembra, con el fin de acelerar el proceso germinativo. La siembra en bolsa permite ahorrar mano de obra y obtener plántulas para el transplante definitivo en menor tiempo; sin embargo, las plántulas presentan un desarrollo desuniforme, mayor susceptibilidad al ataque de plagas y enfermedades y un porcentaje importante de plántulas no deseables. Se recomienda sembrar 2 ó 3 semillas por bolsa, para ralear después de la germinación y dejar la más vigorosa.

La siembra en semillero ofrece mayor uniformidad, se aprovecha un mayor número de plantas y permite obtener un material para la siembra más vigoroso. Las semillas se siembran en surcos de 2 cm de profundidad, separados cada 5 cm; las semillas se colocan separadas y se cubren ligeramente con la tierra mezclada (Castro, 2001). Es recomendable mantener húmedo el suelo y tapar el semillero con mallas, costales o helecho seco para evitar la acción directa del sol, pérdida de humedad, pérdidas por acción de los pájaros y presencia de malezas durante el proceso de germinación (Tamayo y Morales, 1999). Las semillas germinan entre 12 y 20 días después de la siembra, por lo cual se recomienda, a partir del día 10, observar la germinación para retirar la cobertura en el momento oportuno (Castro, 2001). Cuando hayan alcanzado 7 cm de altura, se seleccionan las mejores plántulas para transplantar a las bolsas.

Para el transplante de las plántulas a la bolsa, el suelo del semillero se debe humedecer lo suficiente para facilitar la extracción y no causar heridas a las raíces. Se seleccionan aquellas plántulas que tienen un buen sistema radical (raíz pivotante larga y raíces secundarias completamente sanas), eliminando plántulas que presenten raíz deformes, especialmente con el problema denominado 'cola de marrión' (Tamayo y Morales, 1999). Se recomienda utilizar bolsas 'caféteras' de 15 x 25 ó 15 x 28 cm para un mejor desarrollo de las plantas en el almácigo, ya que el uso de bolsas pequeñas (15 x 21 cm) deforman las raíces (Bernal y Tamayo, 1999).

Para transplantar a las bolsas, se forma un hueco adecuado para que las raíces queden bien acomodadas y se introduce la planta en la bolsa, procurando que las raíces queden bien distribuidas y el cuello cubierto y a nivel de la superficie de las bolsas. Las bolsas se colocan a razón de 4 a 6 hileras de bolsas por mesa de 1 m de ancho, con el fin de que haya buena aireación e iluminación entre las bolsas y prevenir el ataque de plagas y enfermedades. Las bolsas no se deben regar en exceso y deben mantenerse libres de malezas. Entre 8 y 15 días después del transplante a la bolsa, es aconsejable agregar 15 g/bolsa de un producto comercial a base de micorrizas, debido a que con la desinfección del suelo estos organismos benéficos también son eliminados.
Cuando hayan transcurrido 30 ó 40 días después del transplante a bolsa, las plantas estarán listas para ser llevadas al campo. Según Castro (2001), el mejor indicador del momento óptimo para llevar las plantas a sitio definitivo es el inicio del desarrollo de los zarcillos.

Bibliografía

Tamayo PM, Morales JG. Manejo agronómico y fitosanitario de semilleros y almácigos de granadilla, Rionegro, CORPOICA Regional 4, 1999. 28p.
CAPITULO V

ESTABLECIMIENTO DEL CULTIVO DE LA GRANADILLA

1. Preparación del lote

La preparación del lote se debe realizar por lo menos con 1 mes de anticipación y debe coincidir con la época en que las plántulas estén listas para la siembra definitiva (Polanía, 1983; Castro, 2001). Saldarriaga (1998) recomienda la labranza mínima (uso reducido de maquinaria agrícola), acompañada de la incorporación de materia orgánica, con el fin conservar los suelos, prolongar la vida útil del cultivo y mejorar el desarrollo de las plantas. Bacca (1987) propone remover el suelo a una profundidad de 20 - 25 cm, ya que las raíces son muy superficiales. Garcés y Saldarriaga (s.f.) recomiendan sembrar un cultivo colonizador, como hortalizas, maíz o frijol, evitando sembrar solanáceas (tomate, lulo, pimentón, papa, etc.), que son susceptibles a nemátodos.

Si el terreno es muy pendiente se debe adecuar la zona de plateo para facilitar el riego del cultivo y evitar pérdidas de agua. Cuando el terreno es muy plano se deben trazar los drenajes necesarios para evitar encharcamientos.

2. Distancias de siembra

No existen resultados de investigación relacionados con la eficiencia biológica o económica de distintas densidades de población, sin embargo, Saldarriaga (1998) considera que el tamaño del fruto está relacionado en gran medida con las distancias de siembra. Los productores utilizan distancias que van desde los 3 x 3 m hasta los 12 x 12 m, entre surcos y entre plantas, cuando se siembran bajo el sistema de emparrado. Bernal et al. (1986) indican que las distancias más usadas por los agricultores son de 4 x 4 y 8 x 8 m, para un total de 625 y 156 plantas por hectárea, respectivamente. Bernal (1990) y Garcés y Saldarriaga (s.f.) consideran que una distancia de 6,4 x 6,4 m en cuadro es la más apropiada (244 plantas/ha); mientras que Castro (2001) afirma que con una distancia de 5 x 5 m (400 plantas/ha) se alcanzan altos rendimientos, mejor desarrollo de la planta y mayor longevidad del cultivo. Las observaciones realizadas en fincas del norte del Valle del Cauca, municipios de Roldadillo y Bolívar, indican que los productores siembran a distancias de 4 x 4, 4.5 x 4.5 y 5 x 5, para un total de 625, 493 y 400 plantas/ha, respectivamente.
Bernal y Tamayo (1999) consideran que la distancia de siembra debe variar con la fertilidad de los suelos, la topografía y el manejo del cultivo. De otra parte, Saldarriaga (1998) menciona que la decisión de la distancia de siembra en la granadilla, debe considerar el desplazamiento de los operarios, el transporte de insumos y de la cosecha y las necesidades de luz y aire. La tendencia actual es a utilizar una mayor densidad de plantas, con el fin de obtener altas producciones por unidad de superficie, no obstante que el cultivo tenga mayores demandas de mano de obra, por el aumento en las podas y de las prácticas de manejo de las enfermedades foliares.

3. Siembra

Al realizar el hoyado, se pretende proporcionar un sitio definitivo adecuado para el normal desarrollo de las raíces, que permita buena aireación, incremente la retención de humedad y estímule la actividad microbial; el tamaño del hoyo dependerá de las características físicas del suelo (Garcés y Saldarriaga, s.f.).

La preparación de la mezcla del sustrato para la siembra dependerá de los resultados del análisis de suelo que se haya realizado previamente. Castro (2001) recomienda adicionar 2 kg de materia orgánica bien descompuesta y 200 g de micorrizas a cada hoyo y aplicar las enmiendas que el suelo necesite, según el análisis de suelo. De otra parte, Bernal (1990) recomienda adicionar al hoyo materia orgánica bien descompuesta, 125 g de un fertilizante completo, 10 g de elementos menores, 10 g de un nematicida y 500 g de cal.

Castro (2001) recomienda planificar la siembra para que coincida con la época de lluvia, si no se cuenta con riego; y en lo posible, transplantar en horas de la tarde. La siembra debe hacerse a la misma profundidad de la bolsa para evitar encharcamiento y pudrición de las raíces o de la base del tallo.

4. Sistemas de soporte

La granadilla es una planta herbácea y trepadora que necesita un soporte para su desarrollo, a fin de que le permita mejores condiciones de luminosidad, aireación y protección de plagas y enfermedades (Bernal, 1990). Para el cultivo de la granadilla se han utilizado dos sistemas de sostenimiento: espaldera y cama o emparrado.

La espaldera permite mejor distribución de la plantación y mayor facilidad de manejo y soporta mejor al cultivo en suelos de hasta 70% de pendiente, mientras que el emparrado no debería utilizarse cuando la pendiente sobrepasa 40%. Según Bernal et al. (1986), el sistema de espaldera no fue adoptado por los agricultores en Urrao, no obstante los esfuerzos que en ese sentido realizó la Secretaría de Agricultura de Antioquia. En Costa Rica, la espaldera no es un sistema utilizado para sostener la granadilla, porque subutiliza el área de siembra y reduce el rendimiento por unidad de área (Castro, 1997). Uno de los mayores problemas del sistema de espaldera, según Bernal (1990), ha sido la mayor incidencia del llamado ‘golpe de sol’, debido a que los frutos quedan muy expuestos a los rayos solares. Además de la mayor incidencia del golpe de sol, el sistema no es muy utilizado.
debido a que se presenta menor desarrollo de las ramas productivas, se dificulta la realización de las podas de producción y se obtiene menor calidad y producción de frutos (Castro, 2001).

El sistema de emparrado resulta más ventajoso en términos de rendimientos que el sistema de espaldera (Polania 1983; Bernal 1990; Garcés y Saldarriaga, s.f.), facilita la realización de todas las labores técnicas que requiere el cultivo y proporciona mayor calidad de fruta. Castro (2001) considera que el emparrado es el sistema de tutorado más recomendable para sostener el cultivo de granadilla, siempre y cuando se construya de manera adecuada y con materiales resistentes y durables.

4.1 Sistema de espaldera

Se colocan postes de madera cada 6 m en la misma hilera y cada 3 m entre hileras. En las hileras, uniendo los postes, se colocan 4 hilos de alambre liso calibre 12. La altura de la espaldera es de 2 m; a 80 cm del suelo se coloca el primer hilo de alambre, luego los tres restantes a 40 cm entre sí (Bernal, 1990).

4.2 Sistema de emparrado

Existen múltiples formas para construir el emparrado, de acuerdo con las regiones donde se tienen los cultivos o el ingenio y disponibilidad de recursos del agricultor, pero no se dispone de resultados de investigación que reporten un diseño completamente validado en términos de duración, costos, producción, etc. En el norte del Valle, los productores identifican dos tipos de emparrado: el tradicional y el llamado 'de Urrao'. Este último se viene utilizando con mayor frecuencia debido a los menores costos, comparado con el tipo tradicional.

Los materiales necesarios para construir el emparrado son:

- Postes de madera fina de 3 m de largo: se recomienda que sean inmunizados con soluciones de permanganato de potasio o brea liquida y ACPM, principalmente en la parte que va enterrada (Castro, 2001)
- Postes de madera ordinaria o guadua, de 2.8 m de largo
- Alambre de púa calibre 12 ó 15
- Alambre liso calibre 10
- Alambre liso calibre 12
- Alambre liso calibre 16

Por lo general, los campesinos recurren al bosque nativo para obtener la postería, lo que viene ocasionando una disminución de este recurso natural en las regiones donde se cultiva granadilla. El uso de guadua para la construcción del interior del emparrado debe ser promovido, ya que reduce costos y es de gran durabilidad (Bernal y Tamayo, 1999).
Emparrado tradicional. Según Bernal (1990), para la construcción del emparrado tradicional se colocan postes de madera fina cada 5 m en la periferia o borde del lote, los cuales se entierran 1 m, para una altura efectiva de 2 m. En la parte interna se colocan postes de madera ordinaria o guadua cada 10 m. Los postes del borde van unidos por un doble hilo de alambre de púa ó un hilo de alambre de púa y otro de alambre liso No. 12. El alambre liso calibre 12 se tira horizontal y verticalmente sobre los estacones. Para formar el enmallado o red, se utiliza alambre calibre 16, entrecruzándolo a una distancia de 50 cm entre cada uno (Bernal, 1990) (Figura 1).

Figura 1. Emparrado tradicional

Emparrado tipo ‘Urrao’. En la periferia o borde del lote se colocan postes de madera fina a la misma distancia de las plantas. Es recomendable marcar primero los sitios para la postería y después el sitio donde irán las plantas, ubicándolas en el centro de cada 4 postes. Los postes se unen por un hilo de alambre de púa acompañado con un hilo de alambre liso calibre 12. En la parte interior, sobre los postes que van en sentido de la pendiente, se coloca un hilo de alambre de púa, intercalado con un hilo de alambre liso calibre 12. En sentido contrario a la pendiente, se coloca el alambre liso calibre 16, cada 30 cm.

Cualquiera que sea el tipo de emparrado, los postes de la periferia deben estar amarrados o asegurados, ya que son los que más fuerza van a soportar; los postes esquineros tienen 2 puntos de aseguramiento, en dirección a la línea que van a sostener (Castro, 2001). El extremo superior de los postes debe ser en punta para favorecer el escurrimiento del agua y así evitar posibles pudriciones.
Para asegurar los postes externos existen diferentes métodos:

- ‘Pie de amigo’: es un estacón de madera de 3 m de largo, el cual va unido al poste a una distancia de 2 m del pie (Bernal, 1990; Saldarriaga, 1998). Este método no es el más recomendable, debido al rápido deterioro de la madera y a la fisura que se realiza para unirlo a los estacones de la periferia.
- Templetes: también llamados ‘muertos’, son piedras o estacas de madera resistentes a la humedad, enterradas a 1 m de profundidad y a 2 m del pie del estacón, unidas con alambre liso calibre 10 a la cabeza del poste (Castro, 2001) (Foto 1).
- Posteadura inclinada: algunos productores clavan los postes de la periferia inclinados en ángulo de 60-65 grados, simulando un templete.

La durabilidad del emparrado va a depender de la forma como se realicen los amarres del alambre (Foto 2), evitando las mordeduras y las torsiones (Castro, 2001).

Es recomendable dividir el lote en sublotes de máximo 150 plantas, para programar las labores de manera escalonada, planificar mejor y regularizar la oferta al mercado, disminuir riesgos de caída del emparrado y mejorar el control de plagas y enfermedades.
El sistema de sostenimiento de la granadilla constituye el mayor costo del cultivo, y por la magnitud de las necesidades de capital constituye la mayor restricción para los pequeños productores. Además, a diferencia de los demás gastos que se distribuyen en el tiempo, como la fertilización y los controles sanitarios, todos los costos de instalación del sistema de sostenimiento tienen que ser asumidos al inicio del cultivo. Dado el alto costo de establecimiento del cultivo, es frecuente que los productores utilicen materiales usados o de segunda calidad, colocando en grave riesgo la longevidad del cultivo.

Bibliografía

CAPITULO VI

PODAS Y LABORES COMPLEMENTARIAS EN
EL CULTIVO DE LA GRANADILLA

Según Vozmediano (1982), la poda se basa en el desequilibrio que se produce entre las ramas y el sistema radical de la planta, al reducirse la parte aérea y no la parte radical que permanece intacta, suministrando la misma cantidad de savia bruta a las partes de la planta encargadas de su transformación en savia elaborada. Las plantas tienden siempre a equilibrar la balanza entre fuentes y demandas, formando tallos adicionales y hojas (no incrementan el grosor del tronco) y, con ellas, también frutos.

La poda es el principal factor de intervención para regular la actividad vegetativa y reproductiva de la granadilla, permitiendo el establecimiento de un equilibrio entre ambas actividades de desarrollo. Las podas constituyen una de las labores más importantes y necesarias para mantener un cultivo de granadilla productivo, sano y longevo.

1. Objetivos de la poda

Los objetivos de la poda de la granadilla son:

- Modificar la bioarquitectura de las plantas al permitir la formación de la ramificación sobre la estructura.
- Determinar el porte final de la planta manteniendo las plantas sin entrecruzamientos
- Modificar el vigor y aumentar la productividad de las plantas al mejorar la capacidad de brotación del cultivo y el fortalecimiento y engrosamiento de las ramas

Las bondades de realizar correctamente las podas se reflejan en:

- Fácil manejo del cultivo, al formar la planta dependiendo de las necesidades particulares
- Control fitosanitario preventivo, al permitir mejor aireación del cultivo, controlando la humedad relativa
- Mejor calidad de la fruta, al controlar exceso de ramas improductivas y de mala calidad y al dejar solamente las ramas jóvenes y vigorosas
- Un cultivo dinámico, estimulando el rebrote de ramas jóvenes y vigorosas
2. Medidas para una poda eficiente

En términos generales, existen unas medidas de rutina que aseguran la máxima eficiencia de la práctica de la poda:

- Afilar correctamente las tijeras podadoras y herramientas
- Desinfectar las herramientas al cambiar de planta, con hipoclorito de sodio al 10% o solución yodada al 5 ó 10% (Franco y Giraldo, 2000)
- Aplicar fungicidas protectantes al terminar la poda
- Realizar los cortes a ras del tallo para evitar nuevos rebrottes
- Cortar el tallo en forma de bisel para evitar la acumulación de agua en la superficie de corte y reducir el riesgo de pudrición del tejido
- Recolectar y quemar o enterrar el material vegetal lejos del lote para que no se convierta en focos de plagas y enfermedades
- Aplicar fertilizantes y riego después de las podas para compensar el estrés generado a la planta, o planear las podas en épocas de lluvia

Las podas deben ser bien planeadas y permanentes; es importante que las realice personal capacitado, de ello depende una buena producción. Esta labor no se debe realizar en épocas de verano para evitar los golpes de sol o cuarteamiento de la fruta (Bacca, 1987).

3. Tipos de poda

En granadilla, se utilizan 3 tipos de podas: de formación, de producción y mantenimiento y de renovación.

3.1 Poda de formación

Es aquella que se realiza en fases tempranas del desarrollo de la planta y busca determinar la altura de la copa, la ubicación de las ramas principales y el número de ramas principales definitivas. Esta poda se considera fundamental, ya que de su adecuada realización va a depender un buen crecimiento futuro (Miranda, 2001). La poda de formación debe comenzar desde el almácigo (Bacca, 1987; Castro, 1995), eliminando los primeros brotes basales y axilares (Figura 1). Después del trasplante, se deben eliminar todas las yemas axilares para dejar un tallo por planta (CONAFRUT, 1996) (Figura 2) (Fotos 1 y 2). No obstante, Bacca (1987), Castro (1995) y Saldarriaga (1998), recomiendan dejar dos tallos cuando se utilizan distancias de siembra amplias. Las hojas cercanas al suelo deben ser eliminadas para evitar el salpique de agua, medio de transporte de hongos y bacterias de suelo a las hojas y tallos (Castro, 1995).
Figura 1: Poda de brotes basales y axilares en almácigo

Figura 2: Poda de yemas axilares para dejar un tallo por planta.

Foto 1. Forma adecuada de realizar la poda, dejando un tallo por planta

Foto 2. Forma inadecuada de realizar la poda
Durante el periodo de crecimiento vegetativo, en el cual el tallo alcanza el empa-
rrado, se utiliza un tutor de fibra o cabuya para guiar la planta al emparrado. Se
debes revisar periódicamente que los zarcillos (Foto 3) y la fibra (Foto 4) no estén
ocasionando estrangulamientos a la planta (Castro, 1995; Garcés y Saldariaga,
s.f.)

Foto 3. Zarcillos estrangulando la planta

Foto 4. Fibra estrangulando el tallo
Una vez el tallo ha sobrepasado la estructura de soporte, se debe despuntar para estimular la aparición de las ramas primarias (Figura 3). El despunte se realiza a los 30 ó 40 cm, según García y Saldarriaga (s.f.), o a los 50 a 100 cm, según Castro (1995) y Angulo (2000). El punto de corte debe garantizar al menos 8 yemas potenciales.

Las ramas primarias deben ser despuntadas, con el fin de estimular el brote de las ramas secundarias y terciarias, que son las de producción constante (Figura 4). Castro (2001) sugiere que el corte se realice cuando las ramas secundarias alcanzan 1,5 m y García y Saldarriaga (s.f.) recomiendan que se realice cuando alcanzan 2 m. La decisión depende de la densidad de siembra y el tamaño del cuadro.

Cuando se dejan 4 ramas primarias, la distribución se realiza en cruz (Figura 4); de lo contrario, se recomienda que se distribuyan en forma de sombrilla (Castro, 1995; Castro, 2001). Si el cultivo se encuentra en pendientes fuertes, los tallos deben ser dispuestos hacia arriba, para que simule el crecimiento natural de la planta.

3.2 Poda de producción y mantenimiento

La poda de producción y mantenimiento busca regular la distribución de los asimilados, para ser dirigidos a la producción de estructuras reproductivas y mantener el balance entre las diferentes estructuras de la planta, estimulando el crecimiento de nuevas yemas y manteniendo el cultivo con ramas fuertes, sanas y productivas en su propio espacio, el cual está delimitado por su respectivo cuadro.

Las podas de producción y mantenimiento se realizan en las ramas terciarias y cuaternarias: se eliminan las ramas que produjeron, que están enfermas o las que son muy delgadas (Bacca, 1987) y se despuntan aquellas ramas que son muy largas y no producen, para estimular la floración (Castro, 2001).

Las ramas primarias y secundarias que están colgadas se deben colocar sobre el emparrado con lo que se evitan los frutos de baja calidad y se facilita la ventilación y el paso de las personas dentro de la plantación. Como actividad adicional se retiran las hojas viejas, amarillentas o con ataque de enfermedades para contribuir a una buena aireación del lote.

La poda permanente, sumada a la aplicación de fertilizantes y riego, permite planear cosechas constantes y lograr alcanzar precios más altos en aquellos momentos que escasee la fruta. Esta estrategia es altamente efectiva cuando se dispone
de volúmenes altos y mercados asegurados. Sin embargo, cuando se trata de producciones atomizadas de pequeños productores, la producción costante y en consecuencia los bajos volúmenes relativos, incrementan los costos fijos de pos cosecha y mercadeo. La estrategia para concentrar la producción y obtener picos de cosecha consiste en realizar una poda agresiva y en un corto período de tiempo, después de la cosecha.

Figura 3. Despunte del tallo

Figura 4. Distribución de las ramas primarias y despunte de las mismas
3.3 Poda de renovación

Antes de realizar una poda de renovación se debe evaluar que la condición fitosanitaria de raíces, tallo y ramas primarias justifique la renovación y no la eliminación del cultivo. Una vez realizada la poda de renovación, el manejo del cultivo se establece como si se tratase de un cultivo joven, iniciando con las podas de formación.

Bibliografía

Garcés OJ, Saldarriaga GR. El cultivo de la Granadilla, Urrao, Cooperativa de Productores de Urrao, Gráficas Ltda. (s.f.). 32p.

CAPÍTULO VII

MANEJO DE LA NUTRICIÓN EN EL CULTIVO DE LA GRANADILLA

En nutrición de plantas hay tres conceptos importantes a considerar: requerimientos nutricionales, exportación de nutrientes y desórdenes nutricionales. El requerimiento nutricional se refiere a la cantidad de nutrientes que una planta, con un desarrollo normal, necesita extraer del suelo para cumplir su ciclo productivo y generar un rendimiento adecuado. La exportación de nutrientes por la planta es el concepto referido a la cantidad de nutrientes que se retiran o exportan del suelo, para obtener un volumen de producción dado y que son los que habría necesidad de devolver al suelo para mantener un nivel adecuado de nutrientes. La carencia de uno o varios nutrimentos en una etapa determinada del cultivo, el exceso de elementos o el exceso de sales disueltas en la solución del suelo, dan lugar a los denominados ‘desórdenes nutricionales’ de la planta.

1. Métodos de diagnóstico para la nutrición del cultivo

El análisis de suelo proporciona información sobre las características fisicoquímicas que inciden en la disponibilidad de nutrientes asimilables por la planta y el comportamiento de los fertilizantes. Las condiciones físicas del suelo, especialmente la textura, aportan información importante sobre aspectos relacionados con la movilidad del agua y la dinámica de los elementos fertilizantes. El análisis químico indica la riqueza en nutrientes del suelo y ofrece una aproximación sobre aquellos elementos que se encuentran en forma asimilable por la planta. En su conjunto, el análisis de suelo orienta sobre aquellas características que son desfavorables o limitantes para el cultivo y que es necesario corregir.

Por su parte, el análisis foliar es el método más adecuado para diagnosticar el estado nutritivo de la plantación y para evaluar la disponibilidad de reservas en la planta. El contenido de nutrientes en las hojas depende de factores tales como: la edad de la planta, el tipo y la posición de la hoja que se muestrea, la disponibilidad de nutrientes del suelo, la producción y el estado fitosanitario del cultivo.

Los datos analíticos del agua de riego también contribuyen a evaluar el aporte que ciertas sales minerales pueden hacer a la nutrición del suelo y de la planta o la presencia de iones tóxicos para la planta (Legaz et al., 1995).
2. Requerimientos nutricionales de la granadilla

En Colombia, distintos autores han recomendado la aplicación de fertilizantes para diferentes zonas productoras de granadilla, a partir de las condiciones agroclimáticas y de suelos predominantes en las mismas (Garcés y Saldarriaga, s.f.; Secretaría de Agricultura de Antioquia, 1986; Bacca, 1987; Bernal, 1998) (Tabla 1).

Tabla 1. Recomendaciones sobre aplicación de fertilizantes en granadilla en Colombia

<table>
<thead>
<tr>
<th>Autor (año)</th>
<th>Tipo de fertilizante</th>
<th>Dosis recomendada por planta</th>
<th>Frecuencia de aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacca (1987)</td>
<td>Materia orgánica</td>
<td>Según análisis de suelo</td>
<td>Cada 4 meses</td>
</tr>
<tr>
<td>Cal agrícola</td>
<td>Según análisis de suelo</td>
<td>Cada 4 meses</td>
<td></td>
</tr>
<tr>
<td>Fertilizantes compuestos</td>
<td>200-300 g</td>
<td>Cada 4 meses</td>
<td></td>
</tr>
<tr>
<td>Secretaría de Agricultura de Antioquia (1986)</td>
<td>Gallinaza</td>
<td>10 kg por hueco</td>
<td>A la siembra</td>
</tr>
<tr>
<td>Cal dolomítica</td>
<td>.1 kg por hueco</td>
<td>A la siembra</td>
<td></td>
</tr>
<tr>
<td>13-26-6</td>
<td>100 g por hueco</td>
<td>A la siembra</td>
<td></td>
</tr>
<tr>
<td>10-30-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementos menores</td>
<td>20 g por hueco</td>
<td>A la siembra</td>
<td></td>
</tr>
<tr>
<td>Cal dolomítica</td>
<td>1 kg por hueco</td>
<td>Cada 6 meses</td>
<td></td>
</tr>
<tr>
<td>Gallinaza</td>
<td>5 kg por hueco</td>
<td>Cada 6 meses</td>
<td></td>
</tr>
<tr>
<td>Elementos menores</td>
<td>50 g al suelo</td>
<td>Cada 6 meses</td>
<td></td>
</tr>
<tr>
<td>Foliar</td>
<td>10 cc/litro de agua</td>
<td>Cada 6 meses</td>
<td></td>
</tr>
<tr>
<td>Bernal (1998)</td>
<td>17-6-18-2</td>
<td>300 kg por planta</td>
<td>Cada tres meses en el año 1</td>
</tr>
<tr>
<td></td>
<td>17-6-18-2</td>
<td>450 kg por planta</td>
<td>Cada tres meses en el año 2</td>
</tr>
<tr>
<td>Cal dolomítica</td>
<td>1 kg por planta</td>
<td>Cada 6 meses</td>
<td></td>
</tr>
<tr>
<td>Gallinaza</td>
<td>5 kg por planta</td>
<td>Cada 6 meses</td>
<td></td>
</tr>
<tr>
<td>Elementos menores</td>
<td>50 g por planta</td>
<td>Cada 6 meses</td>
<td></td>
</tr>
</tbody>
</table>

Los trabajos en nutrición mineral del cultivo de la granadilla son escasos en el país. Palomino y Restrepo (1991), empleando soluciones nutritivas carenciales, determinaron los requerimientos de plantas de granadilla de 70 días de edad, en condiciones de laboratorio (Tabla 2). Las plantas presentaron exigencias de los macronutrientes en orden decreciente: N, K, Ca, S, Mg y P, y de los micronutrientes: Fe, B, Mn, Zn y Cu. El diseño de planes de fertilización debe ser realizado en forma conjunta por agricultores y técnicos a partir de métodos diagnósticos, utilizando fuentes de nutrientes adecuadas a los tipos de suelos, a los niveles de fertilidad y a los requerimientos de la especie.
Tabla 2. Requerimientos nutricionales de la granadilla en soluciones nutritivas

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>Requerimientos</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>1.6</td>
</tr>
<tr>
<td>K (%)</td>
<td>2.9</td>
</tr>
<tr>
<td>Ca (%)</td>
<td>1.9</td>
</tr>
<tr>
<td>S (%)</td>
<td>---</td>
</tr>
<tr>
<td>Mg (%)</td>
<td>0.7</td>
</tr>
<tr>
<td>P (%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>590</td>
</tr>
<tr>
<td>B (ppm)</td>
<td>60</td>
</tr>
<tr>
<td>Mn (ppm)</td>
<td>40</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>17</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>5</td>
</tr>
</tbody>
</table>

3. Deficiencias nutricionales de la granadilla

Los estudios en soluciones nutritivas realizados por Palomino y Restrepo (1991) han permitido determinar los síntomas de deficiencias de los macro y micro nutrientes de las plantas de granadilla en los estados iniciales de crecimiento (Tabla 3).

4. Fertilización de la granadilla

Existe una gama de fertilizantes en el mercado cuya utilización va a depender del estado del cultivo, la edad, las condiciones agro-climáticas y las circunstancias que rodean a los productores. Las más importantes fuentes de nutrientes utilizados en las distintas zonas productoras de granadilla se presentan en la Tabla 4.

5. Uso de abonos orgánicos en granadilla

En general, los estiércolos son una fuente importante de nutrientes para los cultivos (Maraikar y Amarasiri, 1989). La práctica más generalizada en las zonas productoras es la utilización de gallinaza al momento del transplante al sitio definitivo, con aplicaciones periódicas cada cuatro meses.

La gallinaza se destaca, en comparación con otras fuentes, por el contenido de N, P y K (Giardini et al., 1992). Cuando es aplicada en altas dosis tiene propiedades intermedias con respecto a los fertilizantes inorgánicos y el estiércol de bovino, y posee un importante efecto residual. El elevado contenido de Ca de la gallinaza genera un efecto neutralizador de la acidez del suelo. Con respecto al P, la gallinaza es una excelente fuente al producirse un efecto indirecto sobre las formas de P presentes en el suelo. Rivero y Carracedo (1999) obtuvieron un efecto importante sobre el carbono orgánico del suelo con la aplicación de gallinaza.
Tabla 3. Síntomas de deficiencias nutricionales del cultivo de la granadilla

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>Forma de absorción</th>
<th>Síntomas de deficiencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>NO₃, NH₄⁺</td>
<td>Pobre crecimiento y desarrollo. Coloración verde pálido con posterior amarillamiento de hojas viejas. Tamaño reducido de hojas. Pobre sistema radical. Síntoma se inicia en bordes hacia el peciolo. Existe defoliación excesiva.</td>
</tr>
<tr>
<td>Mn</td>
<td>Mn **</td>
<td>Clorosis intervenal desde la nervadura central hacia los bordes de la hoja, posteriormente hay necrosamiento de las manchas cloróticas.</td>
</tr>
<tr>
<td>Ca</td>
<td>Ca **</td>
<td>Tamaño reducido de las hojas. Clorosis en los bordes de hojas maduras. Mancha necróticas en el ápice. Excesiva aparición de chupones y raíces secundarias. Entorquamiento de hojas superiores y clorosis intervenal a lo largo de los bordes.</td>
</tr>
<tr>
<td>Fe</td>
<td>Fe ++</td>
<td>Coloración blanquecina en nervaduras de hojas, clorosis intervenal.</td>
</tr>
<tr>
<td>Cu</td>
<td>Cu **</td>
<td>Hojas se tornan de color muy verde y se deforman, se enrollan y causa muerte descendente.</td>
</tr>
<tr>
<td>Zn</td>
<td>Zn **</td>
<td>Reducción del tamaño de la hoja y de la lámina foliar, acortamiento de entrenudos. Escasa floración y caída de estructuras.</td>
</tr>
<tr>
<td>S</td>
<td>SO₄</td>
<td>Plantas con crecimiento muy erecto, tallo delgado. Clorosis general en toda la hoja, incluidos los haces vasculares. Hojas más angostas y menos largas. No hay emisión de zarzillos. Poca emisión de raíces secundarias.</td>
</tr>
<tr>
<td>Mg</td>
<td>Mg ++</td>
<td>Clorosis de las hojas más antiguas, al comienzo intervenal, después toda la hoja. Bordes de la hoja ondulados. Coloración púrpura en nervaduras principales y en el envés de la hoja.</td>
</tr>
</tbody>
</table>

Fuente: Adaptado de Palomino y Restrepo (1991)
Tabla 4. Tipos de fertilizantes frecuentemente utilizados por los productores de granadilla en diferentes regiones del país

<table>
<thead>
<tr>
<th>Región</th>
<th>Fuentes de N</th>
<th>Fuentes de P</th>
<th>Fuentes de K</th>
<th>Fuentes de Ca y Mg</th>
<th>Fuentes de micro-nutrientes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioquia</td>
<td>17-6-18-2 Gallinaza</td>
<td>17-6-18-2</td>
<td>17-6-18-2</td>
<td>Dolomita</td>
<td>Agrimins Quelatos</td>
</tr>
<tr>
<td>Nariño</td>
<td>Gallinaza</td>
<td>13-26-6</td>
<td>10-30-10</td>
<td>Dolomita</td>
<td>Agrimins Nutrimins</td>
</tr>
<tr>
<td>Huila</td>
<td>Gallinaza Urea</td>
<td>Calfos</td>
<td>Cloruros</td>
<td>Fosforita Huila</td>
<td>Quelatos Agrimins</td>
</tr>
<tr>
<td>Santander</td>
<td>Gallinaza</td>
<td>10-30-10</td>
<td>10-30-10</td>
<td>Cal agricola Dolomita</td>
<td>Agrimins</td>
</tr>
<tr>
<td>Cundinamarca</td>
<td>13-26-6 10-30-10</td>
<td>SFT 10-30-10</td>
<td>Cloruros Sulfatos</td>
<td>Dolomita</td>
<td>Nutrimins Agrimins</td>
</tr>
<tr>
<td>Valle</td>
<td>Gallinaza</td>
<td>10-30-10</td>
<td>Nitrato de K</td>
<td>Cal agricola Dolomita</td>
<td>Agrimins</td>
</tr>
</tbody>
</table>

La denominada agricultura ecológica, que busca reducir el uso de pesticidas y fertilizantes convencionales, ha contribuido al desarrollo de biofertilizantes y biopreparados que constituyen alternativas con potencial económico y ambiental (Tabla 5).

Tabla 5. Biofertilizantes y biopreparados de uso potencial para la granadilla

<table>
<thead>
<tr>
<th>Biofertilizante o biopreparado</th>
<th>Composición</th>
<th>Uso posible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caldo super cuatro</td>
<td>Estiércol, cal, melaza o miel, sulfatos de Cu, Mg y Zn, ácido bórico, harina de huesos, leche o suero, higado, harina de leguminosas</td>
<td>Biofertilizante rico en formas asimilables de micronutrientes, para uso en diferentes productos hortícolas</td>
</tr>
<tr>
<td>Caldo sulfoalcalico</td>
<td>Azufre y cal viva</td>
<td>Neutralizador de niveles de acidez: rico en Ca y S</td>
</tr>
<tr>
<td>Humus de lombriz</td>
<td>Deyecciones de lombriz: rico en N amoniacal: 0,03%, N total: 7,3%</td>
<td>Disminuye problemas de asimilación de fertilizantes</td>
</tr>
<tr>
<td>Bokashi</td>
<td>Gallinaza, cascarrilla de arroz, pulpa de café descompuesta, agua</td>
<td>Biofertilizante rico en fuentes nitrogenadas, útil para fases iniciales del cultivo</td>
</tr>
<tr>
<td>Agroplus</td>
<td>Bacterias, hongos, levaduras y actinomicetos</td>
<td>Estimulador del crecimiento vegetal</td>
</tr>
</tbody>
</table>

Bibliografía

CAPITULO VIII

ENFERMEDADES DEL CULTIVO DE LA GRANADILLA

Desde cuando se comprobó la naturaleza parasitaria de las enfermedades en plantas y se estableció la fitopatología como ciencia, han existido muchas definiciones y conceptos sobre las enfermedades en plantas. Durante el período denominado etiológico, se le dió mayor importancia al agente causal; la enfermedad fue confundida con el propio patógeno y la planta fue considerada como una entidad pasiva. Posteriormente se demostraría que los factores del medio modificaban completamente la manifestación de la enfermedad; se dio inicio así al período ecológico, durante el cual se consideró que la enfermedad era resultante de una interacción entre la planta, el agente causal y el medio. El concepto de enfermedad llevó a muchos fitopatólogos a limitar el concepto de enfermedad sólo para aquellas que representan importancia económica. Stakman y Harrar (1957), citados por Galli et al. (1978), definieron la enfermedad como un “desorden funcional o una anormalidad constitucional que es perjudicial para la planta o alguna de sus partes o productos, reduciendo su valor económico”.

La enfermedad es un proceso dinámico en el cual un hospedero y un patógeno, en íntima relación con el medio, se influyen mutuamente, de lo que resultan modificaciones morfológicas y fisiológicas (Galli et al., 1978). Este concepto excluye las llamadas enfermedades de causas abióticas, para lo cual es más aconsejable emplear el término ‘daño’.

1. Enfermedades causadas por hongos

1.1 Damping-off ó sancocho: Pythium sp. y Rhizoctonia sp.

El damping-off es ocasionado por un complejo de hongos habitantes naturales del suelo Pythium sp. y Rhizoctonia sp. (Tamayo et al., 1999).

La enfermedad ha sido diagnosticada con mayor frecuencia en semilleros que en almácigos de granadilla. Se puede presentar en semillas (preemergencia), ocasionando la pudrición de las mismas y reduciendo la germinación. En plántulas (postemergencia), el damping-off ocasiona retraso en el crecimiento y muerte repentina (Tamayo y Morales, 1999).

La afección se localiza en el cuello de las plántulas, produciendo necrosis y estrangulamiento del tallo (Tamayo et al., 1999).
Estos hongos son habitantes naturales del suelo, por lo cual su control debe ser preventivo, mediante el tratamiento químico o físico del suelo. Cuando la enfermedad se presenta en semilleros, después de la emergencia, se recomienda eliminar las plántulas afectadas y la aplicación de Previcur N (Propamocarb) en dosis de 1 cc/l ó Derosal (Carbendazim) en dosis de 0,5 cc/l, dirigido a las calles, entre los surcos de las plántulas (Tamayo y Morales, 1999).

1.2 Secadera, pudrición seca de la raíz, pudrición del cuello: Nectria haematococca Berk

El agente causal de la enfermedad es Nectria haematococca Berk & Br, especie fungosa perteneciente a la clase Ascomycetes (Londoño et al., 1989), cuyo estado anamórfico es Fusarium solani (Mart) Sacc, perteneciente a la clase Deuteromycetes.

La 'secadera' de la granadilla es la enfermedad más importante del cultivo en Colombia, debido al tipo de daño causado y puede llegar a ser endémica en una región si no se toman medidas preventivas (Bernal, 1999). En 1996, la 'secadera' había devastado 400 ha de granadilla en la zona de Urrao (Antioquia) y 200 más se encontraban en proceso de eliminación (Tamayo y Varón, 1996).

La infección se presenta en plantas en diferentes estados de desarrollo, siendo igualmente severa en plantas viejas y jóvenes (Tamayo y Varón, 1996). Los primeros síntomas se presentan en plántulas de 20 a 30 días después de emergidas: la plántula detiene su desarrollo y se desprenden las hojas más viejas. En el sitio de inserción de la hoja desprendida se observa una necrosis de color marrón que con el tiempo crece y avanza de manera ascendente, cubriendo parcialmente el tallo. Las hojas afectadas presentan una quemazón sistémica de color café claro, que se extiende a lo largo de las nervaduras causándole la muerte. Cuando la necrosis cubre todo el tallo ocasiona elorosis, marchitez de hojas y muerte generalizada de la plántula (Tamayo, 1999).

En plantas adultas, la enfermedad se localiza principalmente en el cuello de la raíz, afecta la corteza, tapona los haces vasculares e impide el paso de la savia; luego se extiende a las raíces y ocasiona una fuerte marchitez de las hojas, un arrugamiento de frutos y, finalmente, la muerte de la planta (Bernal, 1990). En estados avanzados se aprecian los cuerpos fructíferos del hongo como puntos diminutos de color rojo intenso, los cuales al ser desprendidos por la lluvia, infectan otras plantas (Berrío y Viví, 1997).

El hongo es un habitante natural del suelo y su desarrollo se ve favorecido por la alta humedad presente en la zona adyacente a la base del tallo, por tierras mal drenadas (suelos arícolossos) y por la presencia de heridas en la base del tallo o las raíces. Los nemátodos como Meloidogyne y Pratylenchus sp. predisponen la planta al ataque de la enfermedad (Berrío y Viví, 1997). La invasión se realiza en el xilema, por crecimiento del micelio y formación de microconidias que son llevadas con la savia en la translocación normal, presentando bloqueo y taponamiento de vasos y
Castro (2001) describe la enfermedad en el fruto como círculos anillados de coloración verdosa, que no afecta el contenido de sólidos solubles, pero sí la presentación del fruto. Los insectos Aphis gossypii y Toxoptera citricida de la familia Papilionaceas son vectores de la enfermedad (Chávez et al., 1999), lo mismo que Coleopteros y Chrisomelidae (Morales et al., 2001).

Chávez et al. (1999) encontraron que la transmisión mecánica es una de las más importantes, causándola principalmente herramientas como tijeras podadoras y machetes. La transmisión de la virosis por semilla no ocurre en la familia passiflora.

Aún no se han encontrado productos químicos para el control de las enfermedades virales. El control de este tipo de enfermedad debe ser de tipo preventivo, utilizando material vegetal libre de virus. Una de las prácticas más importantes y sencillas es desinfectar las herramientas con hipoclorito de sodio. Se deben controlar vectores y mantener sólo arvenes nobles. En caso de encontrar una planta con los síntomas se debe eliminar inmediatamente (Tamayo y Morales, 1999).

Bibliografía

Foto 4. Síntomas de virus en hoja

Foto 5. Síntoma de virus en fruto
La aplicación al suelo de algunos aislamientos de los hongos antagónicos como: *Verticillium cladosporium*, *Phaeolomyces lilacinus*, *Metarhizium anisopliae* y *Beauveria bassiana*, ha logrado reducir las poblaciones de nemátodos del género *Meloidogyne* spp. (Tamayo et al., 1999).

Para el control de *Meloidogyne* se han encontrado nemátodos predadores, tales como *Mononchus*, *Mononchoides* y *Anatonchus* (Berrío y Vivi, 1997). Para el control de nemátodos en Urrao, se utiliza Furadan 3G (Carbofuran) al momento de la siembra en dosis de 60 g/planta y luego, la misma dosis, cada 6 meses durante el primer año; la dosis se incrementa a 100 g/planta cada 6 meses, a partir del segundo año (Bernal, 1990).

La aplicación de materia orgánica contribuye a su control, pues reproduce nemátodos saprófitos (Berrío y Vivi, 1997). Castro (2001) recomienda para su control el uso de hidrolato de higuerilla, con aplicaciones en el semillero, el almácigo y la preparación del hoyo.

3. Enfermedades causadas por virus. **Virus de la Hoja Morada, Anillado de la fruta: Virus Alargado y flexuoso (SMV)**

Morales et al. (2001) caracterizaron en maracuyá, mediante pruebas serológicas, un virus del género *Potyvirus*; el cual, al ser comparada la secuencia genética con la base de datos del Banco Mundial de Genes, se constató que era una variante del virus del mosaico de la soya (SMV). El virus, igualmente, causa la enfermedad denominada ‘hoja o mancha morada’ en el cultivo de la granadilla (Foto 4); esta información la confirman Tamayo et al. (2000) y Morales et al. (2001).

La virosis es una de las enfermedades de mayor incidencia e importancia en cultivos de granadilla ya que ha reducido el área cultivada en Colombia (Chávez et al., 1999). El virus infecta 28 géneros de los cuales 23 son *Papilionaceas*, lo cual indica su amplia distribución (Berrío y Vivi 1997). Bernal y Tamayo (1999) reportan que en el Valle del Cauca el virus de la hoja disminuye hasta 10% los rendimientos y 30 a 50% la cantidad de fruta de primera calidad y exportación, respectivamente (Foto 5).

Tamayo y Morales (1999) describen que la virosis aparece en las hojas con lesiones estrelladas; a medida que crecen, se extienden a lo largo de las nervaduras y venas de las hojas, llegando a cubrir hasta formar grandes manchas moradas, púrpuras o rojizas, muy similares a los daños ocasionados por escaldadura o golpe de sol. En las hojas se observa clorosis, epinastia y nervaduras pigmentadas. Tamayo y Morales (1999) indican que la hoja presenta tonalidades de color morado a lo largo de las venas y nervaduras; en el haz, se observa un mosaico suave y un moteado clorótico; mientras que por el envés, se advierten lesiones entre rojizas y púrpuras.
La enfermedad es favorecida por las condiciones de lluvias continuas y temperaturas bajas. La incidencia del hongo se aumenta con la presencia de moscas de las frutas que atacan flores, ya que las larvas causan heridas que favorecen la infección por el hongo (Ocampo et al., 1993).

Para facilitar el manejo de la enfermedad, se recomienda deshojar y retirar del cultivo hojas viejas, estructuras florales secas y frutos caídos. Para el control químico se recomiendan aspersiones periódicas con fungicidas cúpricos y azufrados, que reducen su incidencia. Además, se deben realizar labores, como distancias de siembra que permitan la aireación del cultivo y establecimiento de las plantaciones lejos de árboles o bosques que puedan ocasionar demasiado sombrio.

2. Enfermedades causadas por nemátodos. Nemátodos del nudo: Meloidogyne incognita

Según Tamayo (2001), el agente causal de las nudosidades de las raíces en los cultivos de la granadilla en los departamentos de Antioquia, Quindío y Valle del Cauca es Meloidogyne incognita, perteneciente a la clase Secernentea; orden Tylenchida. Salazar y Toro (1993), citados por Tamayo (2001), describen la presencia de Meloidogyne javanica (Treub) en los departamentos de Valle del Cauca y Caldas.

El nematodo predispone las plantas a infecciones por Fusarium, Alternaria, Phytophthora, Verticillium, Rhizoctonia, Pseudomonas, Agrobacterium y otras. Este nemátodo se ubica en temperaturas que van de 0 a 40°C en el suelo. En América, se encuentra distribuido desde los 30° de latitud norte y los 35° de latitud sur y se va haciendo más común a medida que se aproxima al Ecuador (Berrio y Vivi, 1997).

La raíz puede ser afectada en cualquier estado de desarrollo, incluso en las etapas de semillero y almácigo. En almácigos, las plantas sufren retrasos y los daños sólo se detectan al momento del transplante al sitio definitivo (Tamayo y Morales, 1999). El nemátodo ataca la raíz y produce engrosamiento y agallas en la parte afectada, lo que impide la absorción de agua y nutrientes (Berrio y Vivi, 1997).

Las larvas penetran la raíz y con sus estílules perforan las paredes de las células e inyectan secreciones de sus glándulas esofágicas. Estas secreciones causan un agrandamiento en el cilindro vascular. Las hembras están completa o parcialmente incrustadas en la raíz del hospedero.

El control de Meloidogyne sp. debe ser preventivo, en las etapas de semillero y almácigo. Se debe desinfectar el suelo mediante el método de solarización húmeda o mediante el tratamiento químico con Basamid (Dazomet) en dosis de 40 a 60 g/m² (Tamayo y Morales, 1999). La rotación de cultivos es otra práctica que puede contribuir al manejo de la enfermedad, aunque se debe evitar rotar con plantas de las familias Solanaceae, Rubiaceae, y Musaceae (Berrio y Vivi, 1997).
Para el control biológico en productos hortofrutícolas se han descrito diversos hongos: Trichoderma spp., Coniothyrium spp., Gliocladium sp., Mucor spp., Penicillium spp., Verticillium spp. También se han evaluado algunas bacterias y nemátodos, como antagonistas de Botrytis cinerea.

1.7 Moho negro de los botones florales: Rhizopus stolonifer (Ehrenb.:Fr) Lind. Mucorales

El hongo ataca los pedúnculos y las flores desde su formación: en los pedúnculos que sostienen los botones florales ocasiona una lesión color café que avanza por la corona produciendo la caída del botón y en las flores recién abiertas se puede observar micelio color negro. En condiciones de alta humedad relativa, el hongo puede infectar todas las estructuras florales produciendo, finalmente, su caída. En estados de alta incidencia, los daños se extienden a frutos pequeños y frutos en llenado.

La enfermedad es favorecida por condiciones de lluvias continuas y temperaturas bajas. Cultivos sembrados a distancias muy cortas y con exceso follaje favorecen el ataque del patógeno, que puede llegar a causar pérdidas totales, debido a que tumba los botones florales. La enfermedad también se ve favorecida por la presencia de moscas que atacan las flores, dado que las heridas son sitio de entrada para el patógeno.

La regulación de la humedad relativa, con prácticas como distancias de siembra adecuadas y deshojes periódicos que permitan la aireación del cultivo, es la más importante medida de control, al igual que para Botrytis. Como la enfermedad se asocia a la presencia de moscas de los botones florales (insectos que favorecen su diseminación), es necesario controlarlas. Para el control de la enfermedad también pueden utilizarse los fungicidas Carbendazim (Derosal, Bavistín, Curacarb) en dosis de 1.0 cc/l, Benomyl (Benlate) en dosis de 0.5 g/l, y Clorotalonil (Control 500) 2.5 cc/l, aplicados en rotación (Tamayo y Bernal, 2001).

1.8 Mancha mohosa del fruto (Moho verde): Cladosporium herbarum (pers.:Fr.) Link. Moniliales

Es una enfermedad de poca importancia económica en los cultivos de granadilla en Colombia (Castaño, 1978; Ocampo et al., 1993). Se ha encontrado en cultivos de granadilla ubicados en los Municipios de Urrao, Abriaqui, San Pedro de los Milagros y San Vicente de Antioquia.

El hongo presenta inicialmente un micelio hialino que después se torna de verde oliva a negro, con conidiosforos ramificados y coníodos terminales con una o dos células. Las temperaturas entre 13 y 20 ºC favorecen el desarrollo de la enfermedad. Este hongo sobrevive principalmente en residuos de cultivo; los coníodos son diseminados por el viento, insectos y herramientas de trabajo. El hongo crece sobre la superficie del pedúnculo del fruto y avanza hacia la parte central cubriendolo parcialmente, con una coloración verdosa que corresponde a su esporulación.
Las condiciones favorables para el desarrollo de estos hongos se relacionan con alta humedad relativa y, en ocasiones, con periodos secos prolongados.

Las plantas tratadas con Benlate y Topsín presentaron grado 1,0 y 1,5 de severidad por mildeo blanco, respectivamente, mientras el testigo no tratado se mantuvo en el grado 3 de severidad (Tamayo y Giraldo, 2001). Los autores no recomiendan la aspersión continuada de éstos productos debido al surgimiento de problemas de resistencia del hongo.

1.6 Moho gris de los botones florales y de las flores, moho café de las flores y los frutos: *Botrytis cinerea* Pers ex Fr. *Moniliiales*

La enfermedad fue registrada afectando botones y flores y causando pérdidas cercanas al 70% de la producción (Buriticá, 1999). El llamado ‘moho gris’ de los botones florales, también afecta frutos y es causado por el hongo *Botrytis cinerea* Pers ex Fr. (Ocampo *et al.*, 1993; Buriticá, 1999; Merchán *et al.*, 2000). Según Tamayo y Bernal (2001), la enfermedad en los frutos debería llamarse ‘Moho café’, por su sintomatología.

Botrytis cinerea produce gran cantidad de micelio y varios conidióforos largos y raminados, cuyas células apicales redondeadas producen racimos de conidios ovoides, unicelulares (que se asemejan a un racimo de uvas), incolores o de color gris o café. El hongo libera fácilmente sus conidios cuando el clima es húmedo; luego, estos son diseminados por el viento. *Botrytis* permanece en el suelo en forma de esclerocistos o de micelios sobre restos de plantas en descomposición.

La incidencia del patógeno en campo varía entre 3 y 10% en diferentes regiones. La enfermedad se presenta en los cultivos al inicio de producción, entre 7 y 8 meses edad. Las infecciones iniciales provienen de los botones florales, sitio en el cual la enfermedad es muy severa y donde un inadecuado control ocasiona pérdidas de estructuras florales superiores a 50%. Cuando la enfermedad se presenta en los botones florales y en los frutos, se observa un moho de color café claro que afecta los pistilos en la flor ya fecundada. En los frutos recién formados, el moho afecta el pedúnculo y la base del fruto (Tamayo y Bernal, 2001); en condiciones de alta humedad relativa, cubre totalmente el fruto. El hongo penetra a través de heridas (cicatrices florales, picaduras de insecto y cualquier daño físico). El desarrollo del hongo se favorece en condiciones de humedad relativa superior a 95%, temperaturas entre 20-25°C, abundante luz y exceso de nitrógeno; se desarrolla rápidamente en órganos senescentes o muertos (Tamayo y Bernal, 2001).

Arismendi y Pineda (1991) encontraron que eliminar la corona floral, entre el 8° y 12° día de haber sido fecundada, favorece el incremento en el porcentaje de granadilla tipo exportación, al controlar los hongos *Botrytis* y *Cladosporium*.
Foto 3. *Phomopsis* sp. en hoja

Es conveniente realizar podas y deshojes para mejorar la aireación y penetración de la luz (Garcés y Saldarriaga, s.f.). En cultivos afectados, se recomienda la poda de las estructuras afectadas, la aplicación de pastas cicatrizantes a base de sulfato de cobre (pasta bordelesa) y retiro y quema del material vegetal.

Para el control químico, Berrio y Vivi (1997) recomiendan aplicar en épocas lluviosas, cada 20 días, Benomyl y Mancozeb en rotación con Daconil o Clorotalonil y Benomyl, en dosis comerciales.

1.5 Mildeos polvosos y blancos en granadilla: *Oidium* sp. y *Ovulariopsis* sp. (Moniliales)

Tamayo (1999) constató la presencia de los llamados mildeos polvosos *Oidium* sp. Link y los mildeos blancos *Ovulariopsis* sp. Patouillard & Harriod, hallazgo que le permitió establecer, por primera vez, sus principales diferencias. Las hojas afectadas por mildeo polvoso evidencian la presencia de lesiones difusas individuales de forma circular y color blanco en el haz; son de tamaño variable y cuando coalescen cubren gran parte de la lámina foliar, cubriéndose posteriormente de una masa blanquecina constituida por las estructuras somáticas y reproductivas del agente causal. También se presentan en tallos y fruto; estos últimos se cubren de lesiones individuales, blanquecinas y estrelladas que posteriormente se necrosan. Los mildeos polvosos tienen micelio externo blanco; conidióforos erectos, levantados, simples; esporos unicelulares, cilíndricos, hialinos, catenulados formados basipetalmente (Tamayo y Pardo, 2000).

Las lesiones de mildeos blancos son individuales, de forma circular, color blanco y apariencia afelpada, pueden coalescer cubriendo gran parte de la hoja, lo que origina lesiones cloróticas difusas en el haz. El avance de la enfermedad se caracteriza por un oscurecimiento de las lesiones, que cambian a color café claro y, después, a oscuro. Los mildeos blancos tienen micelio hemiendofítico, de densidad variable, hipófilo, hialino; conidióforos superficiales, en ángulo recto, casi siempre sin ramificaciones, con pared gruesa, esporos unicelulares, predominantemente solitarios.
Resultados de laboratorio indican que los fungicidas más eficientes son: Manzate, Difolatan, Dithane m-45, Kocide 101, Sportak y Orthocide, causando inhibición total en la esporulación y permitiendo sólo 26% de crecimiento micelial (Madrid, 1989). Los fungicidas del grupo de los Benzimidazoles (Benlate, Topsin y Mertec) fueron los productos que en menor porcentaje inhibieron el crecimiento micelial del hongo, en rangos comprendidos entre 41 y 55 %. Este hecho pudo deberse a la resistencia inducida por los benzimidazoles a los hongos fitopatógenos.

1.4 Mancha ojo de pollo, Quemazón: Phomopsis sp. (Diaporthales: Diaporthaceae)

Castrillón (1992) encontró la mancha ‘ojo de pollo’ asociada con diferentes hongos que atacan estructuras florales del cultivo. Es considerado un patógeno débil con necesidad de condiciones ambientales muy específicas para infectar, pues para la diseminación del inóculo requiere alta humedad y viento fuerte.

Phomopsis sp. presenta dos tipos de conidios, ambos sin septas y producidos en conidióforos simples, conidios ovales a fusiformes y filiformes, curvos, denominados estilíporos, con picnidio oscuro, ostiolado, inmerso y globoso (Galli et al., 1980).

Tamayo y Morales (1999) afirman que es una de las enfermedades más limitantes y de mayor prevalencia en semilleros y almácigos de la granadilla. Según Castrillón (1992), la mancha ‘ojo de pollo’ tiene su mayor incidencia en los órganos tiernos de la planta, desde hojas, tallos, brácteas y botones florales, hasta frutos en formación. Las brácteas presentan una o dos lesiones hundidas, de apariencia húmeda, forma redondeada y color pardo. En el fruto pequeño las lesiones son similares; en el fruto ya formado se genera una reacción hipersensitiva que da lugar a la formación de una roseta o quiste de consistencia coriácea y de color café oscuro, donde no se observan los signos de la enfermedad. Berrio y Vivi (1997) indican que el tallo principal es afectado únicamente en la etapa de almácigo o siembra, durante los primeros cuatro meses de la plantación. Luego de la lesión se ocasiona un rompimiento del tejido y trozamiento de la planta.

En las hojas el hongo produce manchas circulares (anillos concéntricos) de color castaño, un centro café claro y un amplio halo amarillo; en el centro de la lesión se destacan puntos negros (FOTO 3). En estado avanzado se cae el centro del tejido afectado. El ‘ojo de pollo’ causa clorosis generalizada de plántulas y caída prematura de hojas, si no se toman medidas oportunas de control (Tamayo y Morales, 1999).

El hongo se presenta con mayor intensidad en Urrao (Antioquia) a una altura de 1.800 a 2.000 msnm, especialmente en las épocas de invierno, lo cual aumenta notablemente la caída de botones florales y frutos recién formados (Berrio y Vivi, 1997). Los semilleros y almácigos también se ven afectados en zonas húmedas o en el interior de las plantaciones de granadilla (Tamayo y Morales, 1999).
Las colonias del hongo en medios de cultivo toman una coloración salmón, con numerosos acérvulos amorfos, de tamaño variable y de color negro ó castaño oscuro, distribuidos en forma de círculo, aunque algunos poseen en su interior setas muy largas de color castaño oscuro. El micelio es raso, de color blanco denso y se va tornando oscuro a medida que la cepa envejece. Los conidioforos son simples, elongados y hialinos, con conidias hialinas, elípticas, uninucleadas y con inclusiones granulares (Saldarriaga, 1989).

En los frutos, las lesiones son algo hundidas, secas, de color café claro, redondeadas, de tamaño variable (entre 1-2 mm) y con acérvulos subepidermales (semejantes a puntos negros) que sobresalen sobre las lesiones. Estas se presentan en grupos o aisladas y, frecuentemente, se observan siguiendo el movimiento del agua lluvia sobre el fruto. Según Bravo et al. (1993), las condiciones climáticas favorables para el desarrollo de la enfermedad son las presentes en zonas de alta humedad relativa, alta precipitación y excesivo sombreadamiento en el cultivo, que corresponden a zonas de bosque muy húmedo premontano o bosque muy húmedo subtropical, en las cuales se favorece la acumulación de agua sobre los órganos de la planta.

Foto 1. Estado avanzado de Colletotrichum sp. en tallo

Foto 2. Colletotrichum sp. en fruto
formaación de enzimas y toxinas. Una vez muere la planta, el hongo coloniza la cor
tezay esporula.

El hongo puede sobrevivir por mucho tiempo en el suelo y en residuos de cosecha; no obstante, para poder infectar y colonizar requiere heridas, las cuales pueden ser causadas por cuarteaduras naturales de la corteza, insectos, nemátodos o por el hombre durante las labores culturales (Tamayo y Varón, 1996).

Las principales fuentes de inóculo y medios de dispersión son el suelo infectado y plántulas de vivero enfermas llevadas al campo; igualmente, el hombre, a través de herramientas, botas y riego, contribuye a la diseminación del patógeno (Tamayo y Varón, 1996).

Al ser el hongo de la secadera un habitante natural del suelo, su control debe ser preventivo mediante el tratamiento químico o físico del suelo que va a ser usado en la preparación de semilleros y almácigos (Cardona y Bernal, 1993). Si se detectan los sintomas en alguna de las plántulas, éstas deben ser eliminadas y retiradas inmediatamente del sitio. Es frecuente que las plántulas tarden en manifestar los primeros síntomas de la enfermedad, pasando desapercibidos y favoreciendo que se lleven al campo plantas aparentemente sanas (Tamayo y Morales, 1999).

Cuando la secadera ataca las plantas adultas se recomienda eliminarlas, tratar el hoyo con un fungicida y encalar, tener cuidado con los encharcamientos y controlar el agua de escorrentía.

Martínez y Urrego (1995) encontraron que el hongo *Trichoderma* sp. (nativo) es eficiente para prevenir la enfermedad, ya que tiene un efecto sinergístico o de compatibilidad con los antagonistas presentes en un suelo solarizado. Esta práctica cultural, combinada con la aplicación de *Trichoderma* sp., es una estrategia adecuada para combatir la enfermedad en las etapas de semillero y almácigo.

Los resultados obtenidos bajo condiciones de almácigo muestran que con el fungicida Captan se obtiene el mayor porcentaje de control de la secadera (58,9%), seguido por sulfato de cobre (29,7%), Metiltiofanato (18,3%) y Procloraz (15,5%) (Acosta y Arcila, 1993).

1.3 Roña de los frutos: *Colletotrichum gloeosporioides* Penz. Melanconiales

La enfermedad se registró en 1991 en el Municipio de Versalles (Valle del Cauca) y posteriormente, en Roldanillo. Los análisis de laboratorio mostraron que los tallos colocados en cámara húmeda, se recubrieron de *Cladosporium* sp. a los 3 días. Las muestras mantenidas en nevera (4 a 10 °C) presentaron esporodios de color rosado pertenecientes a *Fusarium* y fructificaciones similares a *Colletotrichum* (Bravo et al., 1993). La enfermedad se reconoció como antracnosis, asociada al hongo *Colletotrichum gloeosporioides* y su estado telemórfico. La enfermedad observada en Versalles es similar a la registrada en Urrao (Antioquia) por Saldarriaga (1989), sólo que los agricultores de Urrao la denominan 'roña' (Fotos 1 y 2).
2.3 Trips: *Trips* sp. (Thysanoptera:Thripidae)

El Trips constituye una de las plagas más limitantes del cultivo de la granadilla (Berrío y Vivi, 1997; ICA y CORPOICA, 1994).

Los trips son insectos con cuerpo delgado y blando, de aproximadamente 0.5 a 5 mm de longitud; su color generalmente depende del color del sustrato en que se alimenta, para lo cual usa su aparato bucal, raspador chupador. Las alas pueden estar o no presentes dependiendo del instar del insecto; cuando están desarrolladas son largas y estrechas, con poca o ninguna venación y bordeadas de pelos largos a manera de una pluma. Es un insecto partenogenético; el adulto tiene una vida de 35 días, el número de huevos por hembra es de 50, su eclosión ocurre a los 10 días y la duración de la larva es de 6 días (Berrío y Vivi, 1997).

El daño que causa reviste importancia económica, de una parte, por el encrepamiento, amarillamiento y secamiento que causa en las hojas nuevas y brotes (Foto 8) reduciendo el área fotosintética de la planta; y de otra, por su capacidad para actuar como transmisores de virus (Bernal, 1998). Los trips se presentan en épocas de verano. Cuando la población del insecto es alta, el ataque se extiende hasta los botones y se presentan malformaciones (Garcés y Saldarriaga, s.f.).

Los principales hospederos de trips son: el aguacate, el mango, la guayaba, el cebolla, el almendro, el algodonero, el café, la viña, la arveja, el frijol y el maracuyá (Berrío y Vivi, 1997).

Uno de los métodos más utilizados para su control consiste en la colocación estratégica de trampas en el cultivo (ubicadas entre 1-2 m de altura), para la captura de adultos; tales trampas son hechas con material plástico de diferentes colores, e impregnadas de una sustancia adhesiva (pegante, vaselina). Dichas trampas deben ser revisadas periódicamente para determinar el número de insectos capturados y deben ser cambiadas con una frecuencia quincenal. Con estas trampas se logra reducir las poblaciones del insecto. Garcés y Saldarriaga (s.f.) recomiendan podas oportunas, fertilización y desyerbas.

Como controladores biológicos se han registrado parásitos de larvas de *Dasycaphus* sp. Como predateores: *Lauchochrysa varia* Schn, *Chrysopa clavera*, *Paracamus* sp., *Termatophyliidea maculosa* Usinger, *Triphelps* sp. y *Wasmania auropunctata* Roter. Como patógenos se han identificado *Beauveria globulifera* (Speg.) y *Caphalosporium* sp. (Berrío y Vivi, 1997).
Foto 5. Trampa McPhail

Foto 6. Dasiops

Foto 7. Botón floral atacado por Dasiops
ubicándolas espacialmente de acuerdo con el diseño de la plantación. La inspec-
ción a las trapas se hace entre 7 y 10 días, haciendo un conteo de los insectos
capturados. Una vez identificadas las moscas atrapadas en la trampa se cuan-
tifican por especie, utilizando como indicador el número de moscas por trampa por día
(MTD); se divide la cantidad de moscas entre el número de trampas revisadas y el
número de días transcurridos desde la última revisión. Un índice de MTD mayor a
0,080 indica la presencia de altas poblaciones de moscas que requieren control
(ICA, 2000).

El muestreo de frutos es una práctica complementaria para detectar larvas de
mosca en las frutas, determinar el nivel de infestación y corroborar los resultados
del trampéo. Se recomienda tomar muestras de 10 frutos por ha, haciendo un
recorrido en W por el lote.

2.2 Mosca del botón floral: Dasiops inedulis Steyskal y Lonchaea sp.
(Diptera:Lonchaideae)

La mosca del botón floral es una plaga de importancia que ataca las especies del
género Passiflora en la mayoría de las regiones del país. El primer registro de
Dasiops como plaga fue en 1973 en maracuyá. En 1983 se menciona Dasiops
inedulis como plaga de los botones florales en badea y en 1984 como plaga en
maracuyá (Tróchez, 1992). En granadilla es reportada por Bernal et al. (1986),
afectando los cultivos en la zona de Urrao (Antioquia) (Foto 6).

Los huevos de Dasiops son hialinos, de forma alargada, colocados individualmente
o en grupos hasta de 5, dentro o sobre las anteras en el interior del botón floral.
(Foto 7). El período de incubación es de 2 a 3 días y al eclosionar la larva se localiza
dentro de las anteras. La larva es típicamente vermiciforme, acéfala, ápoda y de
forma subcilíndrica, de superficie lisa; se alimenta del contenido de los sacos
polínicos, del botón floral y termina consumiendo totalmente las anteras y el ova-
rio. Cuando la larva completa su desarrollo, abandona el botón floral y empupa en
el suelo; en este estado dura aproximadamente 18 días. El adulto es una mosca de
color azul metálico brillante con los tarsos de color amarillo.

Para el manejo de la plaga se recomienda realizar trampeos para caracterizar su
presencia y tomar las medidas correspondientes. Si la población de adultos es
alta, se recomienda utilizar insecticidas-cebo, una mezcla de 50 cc de proteína
hidrolizada de maíz, más 2 cc de Malathión por litro de agua, aplicándolo en parcheos
al cultivo (Bacca, 1987; Tróchez, 1992).

En cultivos de maracuyá se han identificado dos parásitos y cuatro depredadores
como enemigos naturales de Dasiops. Dos especies del género Opius sp.
(Hymenoptera:Braconidae) parasitan la larva y pupa de Dasiops. Entre los
depredadores de adultos se han observado ninñas de Zelus ruvidius y adultos de
Zelus sp. (Hemiptera:Redividae) depredando Dasiops y otros dipteros. Dos arácnidos
de la familia Thomisidae identificados como Synaemops rubropunctatum y Metadactra
bistulipes (Sf. Misumeninae) y otro de la familia Aracneidae (pos. Verrucosa). fueron
encontrados depredando adultos de follaje y de los botones (Ambrecht et al., 1990).
Manejo integral del cultivo de la granadilla

Foto 1. Ataque de Agraulis

Foto 2. Postura de Agraulis

Foto 3. Anastrepha

Foto 4. Fruto atacado por Anastrepha
se debe replicar y examinar el suelo alrededor del hoyo en un diámetro de 1 m. Otro método es la utilización de trampas de luz para capturar los adultos (Berrioy Vivi, 1997).

Se deben realizar evaluaciones cada dos meses para determinar la dinámica de la población. El muestreo se hace en las calles abriendo huecos de 50 x 50 x 50 cm; si se encuentran 4 larvas o más, se debe aplicar un insecticida a base de Lindano ó Clorpirifos, en dosis de 1g/m² (Berrioy Vivi, 1997).

1.4 Comedores de follaje

Los daños por comedores de hojas son causados por larvas de Lepidópteros: Agraulis sp. (Foto 1). Nodona sp. y Trichoplusia sp. Las posturas se presentan en el envés de la hoja (Foto 2). Las plagas tienen hábito gregario y su ataque es localizado; el principal daño es esqueletizar las hojas y brotes (Saldarriaga, 1998). Su aparición es ocasional y no se presentan ataques severos. Las aspersiones con Bacillus thuringiensis var. Kurstaki, Dimetoato ó Cipermetrina, reducen las poblaciones de estos insectos (Tamayo y Morales, 1999).

2. Plagas del cultivo establecido

2.1 Mosca de las frutas: Anastrepha curitis Stone (Diptera: Tephritidae)

Posada (1989), citado por Vergara (2001), menciona 13 especies del género Anastrepha en diversos frutales (Foto 3). La mosca de las frutas constituye una de las plagas principales de los frutales, por el daño directo que causan a las frutas y porque limitan la producción y limitan su exportación (ICA, 2000).

El ciclo de vida de la mosca de las frutas se inicia cuando las hembras ponen sus huevos debajo de la cáscara de las frutas. Entre 2 y 4 días más tarde, las larvas emergen y empiezan a alimentarse de la pulpa, donde construyen galerías; allí expulsan excrementos que la contaminan y le causan pudriciones. La duración del periodo larval es de 15 a 18 días, influída por factores climáticos y por los hábitos del insecto. La pupa es cilíndrica y de color rojizo; en este estado dura entre 6 y 13 días. La mosca recién emergida de la pupa es blanda y húmeda, por lo que busca refugio entre las hojas y ramas secas. Una vez seca, vuela en busca de alimento. Los frutos afectados por la mosca presentan una apariencia arrugada (Foto 4), y en su interior se encuentran larvas de color amarillo cremoso.

La población de algunas moscas de las frutas se incrementa por la humedad relativa alta y por las condiciones de penumbra que se originan debajo de la estructura del cultivo.

Para el manejo de la plaga se recomienda realizar trampeos que permitan caracterizar su presencia y abundancia y, a partir de esta información, planear las estrategias más adecuadas para su control. Para el trampeo se utiliza la trampa McPhail (Foto 5). En granadilla se acostumbra utilizar una o dos trampas por ha de cultivo,
CAPITULO IX

PLAGAS DEL CULTIVO DE LA GRANADILLA

1. Plagas de semilleros y almácigos

1.1 Tierrero o trozador: *Agrotis ipsilon* (Lepidoptera: Noctuidae)

Agrotis ipsilon se ha registrado en las zonas productoras de Norte de Santander, Caldas y Boyacá (Bernal, 1999). Esta plaga ataca la granadilla como trozador, cortando las plantulas por encima del suelo. Las larvas se alimentan inicialmente de raíces y tejidos jóvenes; posteriormente suelen trozar los tallos tiernos causando la muerte parcial o total de la planta. Comúnmente, las larvas sólo se alimentan durante la noche; en el día, para protegerse de la luz solar, permanecen enterradas al lado de la planta en forma de ‘rosquilla’. Se localizan por focos y afectan almácigos recién establecidos (Bernal y Tamayo, 1999).

Cuando el ataque es generalizado, se recomienda la aplicación de Lorsban (Clorpirifos) en dosis de 2 cc/l. alrededor de la base de las plantulas. También, se aconseja la preparación de cebos tóxicos que se aplican en los focos, alrededor de la base de las plantas, en horas de la tarde (Cardona y Bernal, 1993). Para la preparación del cebo se mezclan 50 g de insecticida, 100 cc de melaza y 5 kg de salvado, en 1 litro de agua. En ataques fuertes se hace necesario instalar un nuevo semillero o hacer resiembras.

1.2 Babosas: *Deroceras sp.*

Las babosas se alimentan de follaje, tallos y raíces. Su presencia se reconoce por los caminos plateados que dejan en el suelo y en las hojas de las plantulas de granadilla. El control cultural se orienta a evitar el exceso de humedad en el semillero y en el almácigo. El utilizar costales como trampas contribuye a diezmar la población.

Si se requiere control químico se recomienda utilizar Agricense –AB (Metaldehído), colocando 2 cebos por bolsa de almácigo (Tamayo y Morales, 1999).

1.3 Chizas: *Ancognatha scarabaeoides* (Coleoptera: Scarabaeidae)

Las chizas en estado de larva, afectan las raíces; en estado adulto, consumen cogollos y raspan los frutos, demeritando su calidad. Sólo en la zona de Urrao ha sido reportada como plaga de importancia en el cultivo de la granadilla.

El control cultural se debe hacer mediante la desinfección del suelo que va a ser utilizado en semilleros y almácigos. Cuando se realicen los hoyos para la siembra

Castro LE. Guía básica para el establecimiento y mantenimiento del cultivo de la granadilla (Passiflora ligularis), Bogotá, ASOHOFRUCOL. Fondo Nacional de Fomento Hortífrutícola, 2001. 75p

Garcés OJ, Saldarriaga GR. El cultivo de la Granadilla, Urrao, Cooperativa de Productores de Urrao, Gráficas Ltda, (s.f.), 32p.

Martínez JA, Urrego, CH. Evaluación de biocontroladores para la secadera (Nectria haematococca Berk y Br) en la granadilla (Passiflora ligularis Juss), durante las etapas de germinador y almácigo. Tesis, Universidad Nacional de Colombia, Medellín, 1995.

Tamayo PJ. Estudio para el control de la secadera (Nectria haematococca Berk. & Br.) de la granadilla (Passiflora ligularis Juss.): Evaluación de patrones existentes y prácticas de manejo integrado, Rionegro, Informe técnico, 1999. 50p.

Tamayo PM, Morales JG. Manejo agronómico y fitosanitario de semilleros y almácigos de granadilla, Rionegro, CORPOICA Regional 4. 1999. 28p.
4. Daños por heladas

Por ser la granadilla un cultivo a libre exposición, se recomienda establecer los huertos en zonas donde la presencia de heladas no sea frecuente. Esta información se puede conocer revisando y determinando con precisión los registros históricos sobre las condiciones agroclimáticas predominantes en las zonas productoras por períodos mayores de 10 años.

Bibliografía

Bernal JA. Plagas y enfermedades de la granadilla (Passiflora ligularis). Revista ICA, División de sanidad vegetal, 1990; 29-36.
Garcés OJ, Saldarriaga GR. El cultivo de la Granadilla, Urrao, Cooperativa de Productores de Urrao, Gráficas Ltda, (s.f.). 32p.
Powles SP. Photoinhibition of photosynthesis induced by visible light. Annual review of plant Physiology 1984; 35:15-44.
2. Caída de estructuras florales

La caída de estructuras florales del cultivo (Foto 2) ha sido asociada a deficiencias nutricionales, tanto de elementos mayores (P y K) como menores (Ca y B). Este problema ha sido descrito en cultivos expuestos a estrés hídrico por periodos prolongados, en las épocas de prefloración, floración y en la etapa de cuajamiento del fruto, estados éstos que son altamente exigentes en agua. La presencia de plagas, como la mosca de los botones florales y la mosca de las frutas, también se relaciona frecuentemente con esta alteración.

Para el manejo de la caída de estructuras florales es necesario que técnicos y productores desarrollen en forma conjunta labores de diagnóstico que permitan determinar la causalidad del problema y diseñen estrategias para disminuir su impacto.

![Foto 2. Botones florales antes de caerse](image)

3. Cuarteamiento de frutos

El cuarteamiento de los frutos de granadilla (Foto 3) ha sido asociado con estrés físico, principalmente déficit hídrico y cambios bruscos de temperatura (Bacca, 1987). Un rajamiento más profundo de la corteza del fruto también ha sido asociado con deficiencias de aquellos nutrientes que tienen que ver con la formación de las estructuras de las membranas celulares, principalmente Ca y algunos transportadores como K y B, en sus diferentes interacciones en los procesos metabólicos (Azcón-Bieto y Talón, 1996).

En general, el problema se presenta en forma aislada y no reviste, para las diferentes zonas productoras, pérdidas importantes. Para su manejo, se recomienda realizar una caracterización del problema, de tal manera que se pueda precisar su causalidad y definir la mejor estrategia de control.
En granadilla, los desordenes fisiológicos más reportados son: golpe de sol, caída de estructuras florales, cuarteamiento de los frutos y daños por heladas (Garcés y Saldarriaga (s.f.); Bacca, 1987; Bernal, 1990).

1. Golpe de sol

El golpe de sol se produce cuando los frutos, principalmente en sus últimos estados de desarrollo, son expuestos a un estrés por exceso de radiación, tanto de radiación UV como de luz visible. El exceso de radiación ultravioleta provoca, fundamentalmente, mutaciones irreversibles en el material genético. En el caso de la radiación visible, la fotosíntesis no puede consumir toda la energía absorbida por las clorofíllas, razón por la cual hay un exceso de energía almacenada que puede desencadenar reacciones oxidativas en los centros de reacción del proceso fotosintético. El resultado final es una reducción de la fotosíntesis (fotoinhibición) y, en último término, la destrucción de los pigmentos fotosintéticos (fotooxidación) (Powles, 1984).

En este tipo de daño, los tejidos, por una rápida desecación, adquieren una apariencia pard a oscura, cuya coloración contrasta con la corteza sana; posteriormente, se presentan vesículas superficiales (Foto 1). La aparición de zonas depirimidas, que generalmente son de color blanco grisáceo en los frutos verdes y de un tinte amarillo en los frutos maduros, deterioran la apariencia física y la calidad final del fruto.

Foto 1. Granadilla afectada por golpe de sol

Para disminuir el efecto de este tipo de fenómeno se recomiendan las siguientes labores culturales:

- Regular el follaje mediante deshoj es moderados, realizados periódicamente.
- No retirar los vestigios florales de la corona presentes en el fruto.
- Reorientar, acomodar o distribuir las ramas sobre la estructura del cultivo, ya que éstas reducen la exposición directa de las frutas.
CAPÍTULO X

DESÓRDENES FISIOLÓGICOS EN EL CULTIVO DE LA GRANADILLA

A lo largo de la mitad del siglo XIX, la mayor parte de la investigación en patología vegetal estuvo dedicada a la descripción de los agentes patógenos de las plantas. En años más recientes, se consideró que las plantas estaban sometidas frecuentemente a situaciones desfavorables ocasionadas por alteraciones en el medio ambiente y que muchas de las pérdidas de interés económico en los cultivos provenían de los efectos de un medio ambiente adverso, sin necesidad de la intervención de un patógeno. Este conjunto de condiciones desfavorables se conoce como ‘estrés medioambiental’.

Según Tudela y Tadeo (1996), se deben considerar tres conceptos íntimamente relacionados entre sí: la respuesta, la adaptación y la acomodación al estrés. El término ‘respuesta’ se define como cualquier alteración, tanto estructural como funcional, que se produzca en las plantas como consecuencia de un estrés. El concepto de ‘adaptación’ se refiere a aquellas modificaciones heredables que aumentan la probabilidad de que una planta sobreviva y se reproduzca en un ambiente particular. La ‘acomodación’ se define como el conjunto de modificaciones transitorias, no heredables, que se producen por exposición a un cambio en el medio. Este factor también se conoce como ‘acclimatación’ de la especie y constituye la expresión fenotípica transitoria de uno o varios fenómenos de adaptación.

La presencia de diferentes mecanismos de adaptación en las plantas implica que el estrés es un concepto relativo, que depende del tipo de planta que se considere y del tipo de estrés al que se somete (Tabla 1). La presencia de cualquiera de los tipos de estrés genera alteraciones en el comportamiento de la planta, la cual es capaz de afectar sus procesos de crecimiento y desarrollo; a estas alteraciones se les denomina ‘desórdenes fisiológicos’.

<table>
<thead>
<tr>
<th>Estrés físico</th>
<th>Estrés químico</th>
<th>Estrés biológico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déficit hídrico</td>
<td>Metales pesados</td>
<td>Por animales</td>
</tr>
<tr>
<td>Salinidad (comp. osmótico)</td>
<td>Salinidad (iones tóxicos)</td>
<td>Por plantas</td>
</tr>
<tr>
<td>Frio</td>
<td>Contaminantes atmosféricos</td>
<td>Por el hombre</td>
</tr>
<tr>
<td>Calor</td>
<td>Herbicidas</td>
<td></td>
</tr>
<tr>
<td>Anaerobiosis</td>
<td>Carencias de nutrientes</td>
<td></td>
</tr>
<tr>
<td>Irradiación luminica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estrés mecánico (vientos)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estrés mecánico (heridas)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Adaptado de Tudela y Tadeo (1996)

La especie *Trigona*, por su hábito peculiar de cosechar néctar y polen para su alimentación o al recolectar material vegetal para la construcción del nido, ocasiona daños en el cultivo de la granadilla y hace que se convierta en plaga agrícola con carácter de gravedad en algunos casos (Vergara, 2001). Las obreras cortan las hojas tiernas, taladrán las flores inutilizándolas y en ataques fuertes pueden dañar los frutos (Bernal, 1996).

La presencia de *Trigona* coincide con la de polinizadores benéficos (Castro, 2001), razón por la cual no se deben aplicar insecticidas para su control, por los daños que puede causar a los polinizadores. El control se realiza buscando los nidos y destruyéndolos (Bernal, 1996), no obstante que éstos pueden estar escondidos o en lugares de difícil acceso.

Foto 8. Daño por *Trips* en el punto de crecimiento
2.4 Araña roja: *Tetranychus p. mexicanus*

Este ácaro se reproduce mediante partenogénesis facultativa; la duración de las diversas etapas varía de acuerdo con las condiciones ambientales (Berrio y Vivi, 1997). En maracuyá, en el Valle del Cauca se describe el siguiente ciclo de vida:

- **Huevo** = 4.2 días
- **Larva** = 2.6 días
- **Protoninfia** = 2.4 días
- **Deutoninfia** = 2.8 días
- **Adulto** = 1.9 días

Es un ácaro pequeño, de color rojo que ubica sus colonias en el envés de las hojas más viejas (Garcés y Saldarriaga, s.f.) (Foto 9). Cuando las infestaciones son graves se presentan en todas las partes de la planta (Berrio y Vivi, 1997). Al succionar la savia causan zonas cloróticas y cuando atacan severamente secan las hojas (ICA y CORPOICA, 1994). La diseminación se hace a través de los vientos fuertes. La araña roja es considerada una plaga de verano (Garcés y Saldarriaga, s.f.).

Como controladores biológicos, Berrio y Vivi (1997) recomiendan *Zetesella mail, Scrobithrips longicomis, Geocoris sp., Orlus majusculos, Anthocoris nemorum, Diaphnida capitata* y *Colomigilla maculata*. ICA y CORPOICA (1994) señalan que los insectos de la familia *Coccinellidae* se comportan como controladores biológicos eficientes.

Como prácticas culturales para el control, se recomienda el uso de riego en épocas de verano (Garcés y Saldarriaga s.f.) y la poda de hojas y estructuras muy afectadas.

El control químico se puede hacer con acaricidas, dos o tres veces en épocas críticas, por lo general, en verano (Bernal y Tamayo, 1999; Garcés y Saldarriaga, s.f.); pero no se puede abusar de los productos químicos, ya que los ácaros presentan resistencia (Berrio y Vivi, 1997).

2.5 Abejita negra taladradora, tierrera o cortadora: *Trigona* sp. (*Hymenoptera: Apidae*)

En Colombia, las abejetitas negras se han convertido en los últimos años en una especie plaga de varios cultivos. Montoya (1987), citado por Vergara (2001), reporta que el género *Trigona* se distinguen de otros grupos de abejas porque no poseen agujón y las venas de sus alas anteriores se encuentran reducidas (Foto 10). Hacen sus nidos en troncos, huecos de los arboles o en la tierra y son de hábitos sociales (Bernal, 1996); su capacidad de vuelo varía de 400 a 500 m (Vergara, 2001).
CAPITULO XI
RECOMENDACIONES PARA EL MANEJO INTEGRADO
DEL CULTIVO DE LA GRANADILLA

El término Manejo Integrado de Plagas (MIP), entendido como la utilización armónica de una serie de técnicas apropiadas para reducir y mantener las poblaciones de plagas por debajo de los niveles de daño económico a la agricultura o a sus productos, es ampliamente conocido por técnicos y productores. En su aplicación cotidiana, este concepto se expresa fundamentalmente como un Manejo Integrado del Cultivo (MIC), con una connotación que va mucho más allá de la plaga y su impacto.

El manejo integrado del cultivo para mantener una plantación productiva y longevar, implica integrar 4 componentes tecnológicos: genética, nutrición, sanidad y labores culturales. La selección de los genotipos adecuados obedece a un reconocimiento de sus requisitos específicos y de su adaptación a las cualidades de la tierra. Las prácticas de nutrición deben ser específicas, según las fases fenológicas del cultivo y el nivel de producción. En el aspecto sanitario se refiere a la detección, reconocimiento, identificación, diagnóstico y tratamiento mediante métodos químicos, culturales y biológicos de las poblaciones de insectos plaga y enfermedades. Las labores culturales en granadilla se expresan fundamentalmente en un diseño adecuado de las plantaciones, seleccionando distancias y densidades de siembra apropiadas, que permitan ambientes de cultivo favorables, buena aireación y buen drenaje, y en los deshojos periódicos y las podas oportunas.

El manejo integrado del cultivo requiere una serie de intervenciones cuyo objetivo es la reducción de la incidencia de los organismos patógenos para las plantas y de las poblaciones de malas hierbas que compiten con el cultivo, hasta llegar a niveles por debajo de los que causan daño económico.

1. Manejo integrado de plagas (MIP)

Al hablar de MIP usualmente se piensa en predadores, parasitoides, bacterias, virus, aves y otros organismos benéficos. Sin embargo, la nueva concepción se refiere a un conjunto integrado de cambios graduales que son asimilados por el productor y que contribuyen significativamente a incrementar la rentabilidad de sus cultivos. Esta concepción implica que la tecnología se adapte a las condiciones agroclimáticas predominantes, que permita la integración de métodos preventivos e inocuos, y que considere la disponibilidad de recursos de los productores y su entorno sociocultural. El control integrado exige que técnicos y productores conciban el sistema de cultivo en toda su dimensión y no solamente en el ámbito de la disciplina o de los agentes causales de la enfermedad.

La granadilla, por su condición de planta semipermanente, exige menor intervención
del ecosistema y mantiene un mejor equilibrio entre plagas y agentes benéficos. La vigilancia o seguimiento de las plagas, simultáneamente con el reconocimiento y evaluación de la actividad de parasitoides, depredadores y entomopatógenos, es la mejor información para mantener una condición sanitaria óptima. El recorrido permanente del cultivo, con observación de las diferentes estructuras de la planta para detectar síntomas iniciales de enfermedades, plagas y daños, y la búsqueda de asesoría para el diagnóstico y control fitosanitario, acorde a los recursos de los productores, son prácticas que contribuyen a mantener un cultivo sano y productivo.

Las técnicas específicas de MIP incluyen mecanismos culturales, químicos y biológicos.

1.1 Control cultural

El control cultural, que incluye todas aquellas prácticas de manejo del cultivo, principalmente de tipo físico y mecánico como desyerbas, plateos, podas, distancias y suministro de riego y de nutrientes, entre otras, se propone mantener la plantación libre de posibles fuentes de inóculo y en buen estado de desarrollo para tolerar el impacto de los patógenos.

Teniendo en cuenta la permanencia de algunos patógenos en el suelo, particularmente hongos, se recomienda la rotación de los sitios de cultivo en la finca o el cambio de cultivo en el tiempo, por la presencia de estructuras de resistencia. La regulación de la humedad relativa dentro del cultivo, utilizando densidades más bajas; el manejo de podas frecuentes y deshojos, sin dejar estructuras que permitan el desarrollo de los hongos; y el retiro de las estructuras enfermas de la planta y de los residuos resultantes de las labores de poda y deshojo; constituyen prácticas culturales por excelencia en el cultivo de la granadilla.

Por la importancia que tienen las moscas en el cultivo de la granadilla, se recomienda hacer evaluación permanente de su población por medio de trampas McPhail y realizar controles culturales basados en: la recolección de flores y frutos caídos, los cuales se deben colocar en una jaula de marco de madera recubierta con anejo de calibre fino para evitar la salida de adultos de la plaga, pero que permita el paso de los insectos benéficos (parasitoides); la aplicación de insecticidas de baja toxicidad en surcos alternos, dirigiendo la aplicación hacia el tercio medio y bajo de la planta; y la revisión de los frutales aledaños al cultivo, principalmente guayabos silvestres
1.2 Control químico

La mayoría de los sistemas de cultivo de la agricultura moderna ha favorecido la destrucción de enemigos naturales de las plagas, la reducción de la fauna silvestre, el desarrollo de resistencia a los plaguicidas, y la contaminación del aire, suelo, agua y alimentos (Vergara, 1993). De manera específica al cultivo de la granadilla, desde 1986 existía preocupación en la zona productora de Urrao por el incremento de los insectos plaga en el cultivo, la utilización de más de 30 insecticidas y el total desconocimiento sobre el insecticida a utilizar, su dosificación y las épocas de aplicación (Secretaría de Agricultura de Antioquia, 1986).

En términos generales, el control químico es adecuado, sólo a partir de un diagnóstico claro y la aplicación de las dosis recomendadas de productos que sean específicos para el problema, en los momentos oportunos y con los instrumentos específicos. Para prevenir problemas de resistencia, es recomendable rotar los productos (el ingrediente activo y no la marca comercial).

Dentro de las nuevas estrategias de control químico que se consideran ambientalmente más sanas y que reducen los riesgos de rechazo de los productos por contaminación con plaguicidas sintéticos, se encuentran los extractos de plantas. Desde tiempos inmemorables, ha reconocido que en las plantas existen compuestos químicos que pueden lograr reacciones de diverso tipo sobre los insectos; su acción puede ser repelente o de reducción y prevención del proceso alimenticio de los insectos (extractos antialimentarios) afectando su crecimiento, desarrollo y supervivencia (Vergara, 1993). Los trabajos sobre inventarios de plantas con propiedades insecticidas son numerosos y actualmente se utilizan cerca de 700 especies en diferentes partes del mundo.

1.3 Control biológico

Desde hace aproximadamente 30 años, el control biológico de patógenos de plantas ha sido considerado como una estrategia con posibilidades extraordinarias para el manejo integrado de enfermedades y plagas y para reducir, de manera sostenible, su impacto productivo y económico en los cultivos. El interés crece a medida que aumentan las regulaciones y las restricciones en el uso de plaguicidas y no se visualizan otras alternativas para el control de fitopatógenos.

El control biológico se implementa mediante el uso de parasitoides, depredadores y entomopatógenos. Estos organismos están presentes o llegan a los cultivos en busca de aquellas plagas que son sus huéspedes y presas, los atacan en sus diferentes estados biológicos y de esa manera evitan que incrementen su población y que causen daños económicos. Para utilizar eficientemente este recurso, es indispensable conocerlo, evaluarlo y adoptar mecanismos que refuerzen su actividad reguladora (García, 2000).
Los parasitoides son insectos pertenecientes principalmente al grupo de Himenópteros (avispas) y Diptera (moscas), cuyas hembras depositan sus huevos dentro, sobre o cerca del huésped como endoparásitoides, o sobre él como ectoparásitoides, ocasionando su muerte. El parasitismo puede ocurrir en los huevos de la plaga, en cuyo caso los adultos de los benéficos emergen de las larvas o directamente en las larvas. También pueden causar parasitismo en las larvas y emerge de las pupas, afectar directamente las pupas y parasitar o emergir de adultos.

La mayoría de los depredadores pertenecen al grupo de los insectos y entre estos a los órdenes Coleoptera (cucarrones), Hemiptera (chinches), Diptera (moscas), Hymenoptera (avispas), Neuroptera (crisopas), Odonata (libélulas), Orthoptera (mántidos) y Dermoptera (tijeretas). En general, son de un tamaño mayor que la presa o plaga de la cual se alimentan. Al grupo también pertenecen arácnidos y animales vertebrados, como aves, reptiles, peces, sapos, ranas y algunos mamíferos. El impacto de los depredadores puede observarse en los huevos de la plaga, las larvas o los adultos.

El grupo de los entomopatógenos está conformado por microorganismos, como virus, bacterias, hongos y nemátodos, que causan enfermedades en los insectos o ácaros plaga y provocan su muerte. Los mayores avances de la investigación con entomopatógenos se han logrado con los hongos; éstos, al invadir el huésped, endurecen su cuerpo, lo cubren con estructuras reproductivas que le dan una coloración blanca al insecto muerto, como ocurre con los hongos Beauveria y Verticillium, o verde pálida, al fructificar el hongo, tal como sucede con los hongos Metarhizium spp. y Nomuraea sp. (García, 2000).

2. Manejo de arvenses

Las arven ses, como todo ser vivo, compiten con las especies cultivadas por agua, nutrientes, espacio, luz y dióxido de carbono. En esta relación de competencia por los requerimientos básicos, las arven ses originan pérdidas en la producción agrícola.

- Disminuyen los rendimientos, bajando la productividad por hectárea
- Son hospederas de insectos y patógenos dañinos a los cultivos
- Obstaculizan las labores culturales y de cosecha
- Aumentan los costos de producción

El principal periodo de competencia de arven ses en el cultivo de la granadilla se presenta desde la siembra hasta los diez meses de establecido el cultivo (Castro, 2001), razón por la cual se recomienda realizar 4 limpias, una cada 3 meses, desde el transplante hasta cuando las plantas se hayan extendido sobre el emparrado y proporcionen sombra debajo de él. Después de establecido el cultivo la competencia de las arven ses disminuye notablemente y las limpias se deben realizar de acuerdo con la invasión que se presente (Polanía, 1983).
Castro (2001) recomienda que se estimule el establecimiento de hierbas de porte bajo y raíces superficiales, de tal forma que sin competir por los nutrientes del suelo, proporcionen humedad y permitan las actividades normales de los microorganismos que lo habitan.

Las malezas se pueden controlar de forma manual, mecánica o química. Bacca (1987) recomienda el control mecánico, mediante el uso de azadón en forma superficial o macheteo bajo; igualmente, recomienda acumular el material resultante en forma de pilas en las calles del cultivo y, una vez descompuesto, adicionarlo al suelo. Bernal et al. (1986) y Bernal y Tamayo (1999) señalan que los agricultores controlan las arvenes con azadón, tanto en el plato como en las calles, descubriendo las raíces, ya que el sistema radical de la granadilla es muy superficial, y desprotegiendo el suelo, dejándolo a merced de las lluvias y vientos, con lo cual se incrementan los procesos erosivos. Bernal et al. (1986) recomiendan limpiar las calles con machete o guadaña, combinado con la aplicación de glifosato con pantalla. Según García y Saldarriaga (s.f.) y Castro (2001), el control químico debe dirigirse especialmente a gramíneas, que compiten más con el cultivo, con el fin de erradicarlas y permitir el establecimiento de malezas nobles.

Polanía (1983) no recomienda el uso de herbicidas por la alta susceptibilidad de las plantas de granadilla. En floración, por ejemplo, los herbicidas causan fitotoxicidad y producen la caída de flor.

En el plato, el control de malezas se debe hacer a mano, para evitar heridas en la base del tallo (Bernal, 1990). El primer plateo se realiza inmediatamente después del transplante, dejando libre de malezas 80 cm alrededor de la planta (Polanía, 1983), posteriormente se realizan cada dos meses, antes de la fertilización (Castro, 2001).

Bibliografía

Garcés OJ, Saldarriaga GR. El cultivo de la Granadilla, Urrao, Cooperativa de Productores de Urrao, Gráficas Ltda. (s.f.). 32p.

García RF. Control biológico de plagas MIP. Palmira (Colombia), Programa nacional de manejo integrado de plagas, CORPOICA, PRONATTA, Litotamara Ltda, 2000. 95p.

CAPITULO XII

COSECHA Y POSCOSECHA DE LA GRANADILLA

1. Variables para determinar el momento de cosecha

Después del transplante de las plántulas, la primera cosecha se presenta a los nueve meses (Bacca, 1987; Tamayo et al., 1999) y la máxima producción del primer ciclo se alcanza tres meses después. El momento de la cosecha es determinado por diferentes variables como: el tiempo transcurrido entre la floración y la cosecha, el porcentaje de maduración de la fruta, los sólidos solubles del jugo (°Bx) y la acidez titulable. Hoyos y Gallo (1987) consideran que el sabor característico y el desarrollo completo de la fruta son los indicadores para la toma de decisiones por parte del productor.

1.1 Tiempo de floración a cosecha

El tiempo transcurrido entre la floración y la cosecha se estima entre 70 y 75 días (Saldarriaga, 1998), criterio que puede ser aprovechado por el agricultor para planear las actividades y aproximarse a una determinación de los momentos de cosecha.

1.2 Porcentaje de maduración de la fruta

El indicador más utilizado para la cosecha es el porcentaje de maduración. Castro (2001) y Hoyos y Gallo (1987) consideran que la madurez comercial se alcanza cuando el fruto tiene 75% de color amarillo y 25% de color verde; Saldarriaga (1998) indica que la madurez se alcanza entre 50 y 75% de color amarillo. Cerdas (1995) reporta que a partir del 25% de coloración amarilla, la granadilla presenta características internas de calidad aceptables, dado que ya se han desarrollado altos valores de azúcares.

La norma técnica ICONTEC NTC 4101 estableció una tabla de colores de apoyo para determinar el porcentaje de maduración de la granadilla (Tabla 1). La interpretación de los colores se presenta en la Tabla 2.

El productor debe asegurarse que al comprador le llegue el producto con el grado de color que exige, para lo cual se recomienda recolectar la fruta con un punto menor de color (Castro, 2001).
Tabla 1. Tabla de color de la granadilla según la norma técnica ICONTEC NTC 4101 (Tomada de ICONTEC, 1997)
Tabla 2. Criterios de interpretación de color de la granadilla

<table>
<thead>
<tr>
<th>Color</th>
<th>Interpretación</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Fruto de color verde oscuro bien desarrollado</td>
</tr>
<tr>
<td>1</td>
<td>El color verde pierde intensidad y aparecen leves tonalidades amarillentas</td>
</tr>
<tr>
<td>2</td>
<td>Aumenta el color amarillo en la zona media del fruto y permanece el color verde en la región cercana al pedúnculo y a la base del fruto</td>
</tr>
<tr>
<td>3</td>
<td>Predomina el color amarillo que se hace más intenso, manteniéndose verde la zona cercana al pedúnculo y a la base</td>
</tr>
<tr>
<td>4</td>
<td>El color amarillo ocupa casi toda la superficie del fruto, excepto pequeñas áreas cercanas al pedúnculo y a la base, en donde se conserva el color verde</td>
</tr>
<tr>
<td>5</td>
<td>El fruto es totalmente amarillo</td>
</tr>
<tr>
<td>6</td>
<td>El fruto presenta coloraciones anaranjadas y tonalidades rojizas</td>
</tr>
</tbody>
</table>

Fuente: ICONTEC (1997)

La característica de fruta climatérica de la granadilla, facilita recolectar el fruto dependiendo de las necesidades del mercado (Garcés y Saldarriaga, s.f.) y permite al productor tomar decisiones para la venta. Si el precio de compra está muy bajo, el productor puede dejar madurar la granadilla adherida a la planta hasta cuando alcance un mejor precio. Castro (1997) indica que con una maduración del 25%, la fruta puede permanecer en la planta hasta 45 días. Por el contrario si el precio es atractivo se puede cosechar hasta con 25% de maduración (Saldarriaga, 1998).

1.3 Sólidos solubles de la fruta (°Bx)

La granadilla se debe cosechar con 13 ó 14 °Bx (Saldarriaga, 1998), aunque dependiendo del color solicitado tendrá diferentes °Bx. Hoyos y Gallo (1987) señalan que la fruta se considera madura cuando alcanza 13,4 °Bx promedio. El contenido de sólidos solubles cambia con el almacenamiento de la granadilla (Cerdas, 1995) (Tabla 3).

Tabla 3. Efecto del tiempo de almacenamiento a 8 ° sobre el contenido de sólidos solubles (°Bx) de la granadilla

<table>
<thead>
<tr>
<th>Coloración amarilla (%)</th>
<th>Tiempo en días</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>7.3</td>
</tr>
<tr>
<td>25</td>
<td>13.7</td>
</tr>
<tr>
<td>50</td>
<td>13.1</td>
</tr>
<tr>
<td>75</td>
<td>14.8</td>
</tr>
<tr>
<td>100</td>
<td>14.8</td>
</tr>
</tbody>
</table>

Fuente: Cerdas (1995)
El contenido de sólidos solubles (°Bx) es poco utilizado por los productores como indicador de madurez, debido a la carencia de instrumentos para su medición. La norma NTC 4101 (ICONTEC, 1997) correlaciona el color de la granadilla con los sólidos solubles totales (Tabla 4).

Tabla 4. Contenido de sólidos solubles totales, expresado como °Bx, correspondiente a la tabla de color de la granadilla

<table>
<thead>
<tr>
<th>Color</th>
<th>°Bx (mínimo)</th>
<th>°Bx (máximo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12.9</td>
<td>14.0</td>
</tr>
<tr>
<td>1</td>
<td>13.1</td>
<td>14.1</td>
</tr>
<tr>
<td>2</td>
<td>13.5</td>
<td>14.3</td>
</tr>
<tr>
<td>3</td>
<td>13.5</td>
<td>14.4</td>
</tr>
<tr>
<td>4</td>
<td>14.1</td>
<td>15.2</td>
</tr>
<tr>
<td>5</td>
<td>14.2</td>
<td>15.3</td>
</tr>
<tr>
<td>6</td>
<td>14.7</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Fuente: ICONTEC (1997)

1.4 Acidez titulable

La acidez titulable en granadilla, expresada como porcentaje de ácido cítrico que contiene el fruto, no es un método utilizado por los productores como indicador de madurez de cosecha. La Tabla 5 presenta la relación que existe entre la guía de color y la acidez titulable, según la norma técnica NTC 4101.

Tabla 5. Acidez titulable, expresada como porcentaje de ácido cítrico, correspondiente a la tabla de color de la granadilla

<table>
<thead>
<tr>
<th>Color</th>
<th>% Acido cítrico (mínimo)</th>
<th>% Acido cítrico (máximo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.46</td>
<td>0.70</td>
</tr>
<tr>
<td>1</td>
<td>0.40</td>
<td>0.56</td>
</tr>
<tr>
<td>2</td>
<td>0.38</td>
<td>0.52</td>
</tr>
<tr>
<td>3</td>
<td>0.32</td>
<td>0.46</td>
</tr>
<tr>
<td>4</td>
<td>0.30</td>
<td>0.44</td>
</tr>
<tr>
<td>5</td>
<td>0.29</td>
<td>0.41</td>
</tr>
<tr>
<td>6</td>
<td>0.28</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Fuente: ICONTEC (1997)

2. Estimativos de producción

Con anticipación, es factible estimar los volúmenes de la cosecha de granadilla, información que es útil para determinar el número de recolectores y la cantidad de empaque. Según Castro (2001), los estimativos de cosecha se determinan:
• Seleccionando al azar 7% del total de cuadros a cosechar
• Contando el número de granadillas de cada cuadro
• Calculando el promedio de granadillas por cuadro
• Multiplicando el promedio por cuadro, por el número total de cuadros del lote

3. Recolección de la fruta

Como preparativo para la cosecha, Saldarriaga (1998) recomienda aplicar fungicidas, como tiabendazol 0.5 cm³/l de agua, más 5 cm³/l de hipoclorito de sodio, el día anterior a la cosecha, como medida preventiva del ataque de hongos.

Para la recolección, el fruto de la granadilla debe estar totalmente seco, evitando posibles daños por hongos (Garcés y Saldarriaga, s.f.). Debido a la heterogeneidad en la aparición de las flores y al proceso de maduración de la fruta, la recolección puede durar varios días, incluso, semanas. El análisis de la información obtenida en fincas seleccionadas del norte del Valle del Cauca, indica que en promedio se requieren 4.7 jornales por tonelada de fruta recolectada, es decir, un trabajador recolecta 17.3 cajas por día en promedio. De un total de 196 jornales que se requieren cada año para las distintas labores de manejo de la granadilla, 30.2% son para la recolección.

Es aconsejable realizar la recolección en las primeras horas del día, considerando que la mayoría de los productos agrícolas presentan una mayor frescura y condiciones más aptas para la cosecha en las horas de la mañana (Galvis y Herrera, 1999). Cerdas (1995) considera que es aconsejable hacer la recolección en la mañana, para no exponer la fruta a la radiación solar y protegerla de los aumentos de temperatura, logrando que permanezca más fresca.

Hoyos y Gallo (1987) recomiendan realizar la práctica de cosecha con tijeras; en cambio, Castro (1997) considera que las tijeras dejan un punzón cortante que puede rayar las frutas. La recolección debe hacerse manualmente, aplicando presión con los dedos sobre el tercer nudo, en la parte superior del caliz (Foto 1). Los operarios deben tener las uñas cortadas, las manos desinfectadas y deben evitar tocar la fruta con la mano para no retirar el recubrimiento natural que la protege; la pérdida de esta cutícula cerosa facilita el deterioro de la fruta y la pérdida de su calidad; algunos productores utilizan guantes de lana para coger el fruto y así evitar el rayado (Castro, 2001).

La recolección se realiza en cajas de cartón, utilizando como base una caja plástica (Foto 2), la cual le da soporte (Nieto et al., 2001); algunos productores utilizan la caja plástica con un cobertor de lana para evitar el rayado. Las canastillas plásticas deben desinfectarse con hipoclorito de sodio al 10% (Saldarriaga, 1998).

El fruto desprendido se deposite en la caja de cartón y se ordena de forma que los pedúnculos vayan todos en la misma dirección para evitar que roce la cáscara de otras frutas y se produzca rompimiento de la epidermis y la corteza (Cerdas, 1995).
Entre tendido y tendido se coloca una capa de papel para proteger el fruto (Castro, 2001). No se deben colocar más de 3 tendidos para evitar el deterioro de la fruta (Cerdas, 1995).

Si el cultivo se encuentra muy retirado del sitio de almacenamiento, es aconsejable adecuar un lugar intermedio que cumpla con las condiciones mínimas: fresco, sombreado, protegido de la lluvia, que el producto no toque directamente el suelo y en el cual se pueda realizar un almacenamiento temporal (un día) tanto de insumos para la cosecha como de la granadilla. El transporte del lote al centro de acopio se realiza por medio de angarillas de espalda en zonas de ladera y en zonas planas por medio de carretillas (Saldarriaga 1998); para prevenir daños del fruto no se deben hacer arrumes de más de tres cajas.

4. Productividad y estacionalidad de la producción

Utilizando la información generada en los municipios del norte del Valle del Cauca, la productividad de la granadilla se ajusta a un modelo en el cual los años 2 y 3 del cultivo son de máxima producción, para comenzar a reducirse paulatinamente hasta el año 6, cuando la gran mayoría de los productores ya se han decidido por la renovación del cultivo (Gráfica 1).
Gráfica 1. Modelo de productividad (t/ha) de la granadilla a través del tiempo (número de años) en fincas del norte del Valle del Cauca

Es común que los productores, cuando se refieren a la productividad del cultivo, no lo hagan con base en la unidad de superficie (kg/ha, por ejemplo), sino con base en la planta (kg/planta). Este indicador parece ser más adecuado para medir la eficiencia de un cultivo de granadilla, tanto en términos de productividad como de costos. En la Tabla 6 se presentan los indicadores de productividad en fincas seleccionadas del norte del Valle del Cauca (municipios de Roldadillo y Bolívar), considerando una densidad de 494 plantas/ha, sembradas a una distancia promedio de 4,5 x 4,5 m.

<table>
<thead>
<tr>
<th>Año</th>
<th>t/ha</th>
<th>kg/planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.00</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>16.41</td>
<td>33.2</td>
</tr>
<tr>
<td>3</td>
<td>15.64</td>
<td>31.6</td>
</tr>
<tr>
<td>4</td>
<td>12.03</td>
<td>24.3</td>
</tr>
<tr>
<td>5</td>
<td>10.01</td>
<td>20.3</td>
</tr>
<tr>
<td>6</td>
<td>6.07</td>
<td>12.3</td>
</tr>
</tbody>
</table>

A partir del modelo, se infiere una productividad de 10,4 t/ha.año, resultado de dividir la producción total en 6 años por el área sembrada en cualquier fase del cultivo. Este valor es cercano al promedio nacional (9,6 t/ha.año) que se obtiene de los datos del Sistemas de Información Estratégica del Sector Agroalimentario (SIESA) de la CCI. El promedio de productividad calculado en fincas del norte del Valle, durante los 3 mejores años del cultivo (años 2, 3 y 4) alcanza 14,7 t/ha.año.

No obstante que hay disponibilidad de fruta durante todo el año, la producción en Colombia se concentra en los meses de febrero y marzo y entre octubre y diciem-

Considerando que el precio mayorista es un reflejo del abastecimiento o desabastecimiento relativo, la Gráfica 2 señala que a partir de julio y hasta febrero se registran los más bajos precios del producto en los mercados más importantes, consecuencia probable de la mayor oferta de la fruta, aunque se observan leves diferencias según la plaza. Desde marzo hasta junio, los precios de la granadilla repuntan en todos los mercados nacionales, como probable consecuencia de su baja oferta.

![Gráfica 2. Precio de la granadilla a mayorista ($/kg) en los cuatro mercados más importantes para la fruta en el país (año 2000); cálculos propios a partir de los datos del SIESA de la CCI](image)

5. Selección de la fruta

La selección de la granadilla se propone retirar los frutos que no son aptos para la comercialización o que pueden dañar la calidad de otros frutos. La actividad se debe realizar en un lugar cubierto, garantizando a los operarios las necesidades ergonómicas básicas: luz, altura de la mesa, fácil obtención de insumos, continuidad en el proceso, etc. Hoyos y Gallo (1987) recomiendan utilizar una banda transportadora. En este proceso se debe tener personal calificado y usualmente lo realizan los comercializadores.

La primera selección se realiza en el lote, al cosechar primero la fruta tipo exportación y, posteriormente, las de tipo primera y segunda. La selección en el centro de acopio consiste en eliminar los frutos partidos, rayados, deformes o que no presenten pedúnculo entero; para la mayor parte del mercado nacional, sólo se deben dejar frutos que presenten buen aspecto, enteros, secos, libres de cualquier olor o color diferente al natural. Para el mercado se deben tener en cuenta los requerimientos generales de la norma de calidad NTC 4101:
Los frutos deben estar enteros y tener la forma esférica característica de la granadilla
- Deben estar sanos
- Deben estar exentos de materiales extraños (tierra, polvo, agroquímicos y cuerpos extraños) visibles en el producto o en su empaque
- Deben presentar pedúnculo (con 3 nudos)
- Deben mantener la capa de cera natural que recubre la fruta
- No debe presentar deformaciones (hundimientos y/o agrietamientos)

6. Clasificación de la granadilla

Con la clasificación de la fruta se propone dar uniformidad a las diferentes categorías. En Urrao se tienen establecidas 4 categorías: exportación, primera, segunda y tercera. Castro (2001) clasifica la granadilla en 3 categorías y recomienda utilizar anillos de medición hechos con un trozo de cartón, el cual se perfora de acuerdo con las medidas correspondientes:

- Fruta de primera: diámetro mayor de 66 mm y defectos o manchas en la cáscara entre 5 y 10%
- Fruta de segunda: diámetro entre 61 y 65 mm y defectos o manchas en la cáscara entre el 5 y el 10%
- Fruta de tercera: diámetro menor de 60 mm

La norma ICONTEC NTC 4101 no considera el calibre ni el color para la clasificación:

- Categoría extra: la granadilla debe cumplir los requerimientos generales definidos en la normatividad NTC 4101 y estar exenta de todo defecto que desmerite la calidad del fruto (Foto 3)

- Categoría I: la granadilla debe cumplir los requerimientos generales definidos en los requisitos generales de la normatividad NTC 4101, pero se aceptan ligeros defectos en el color y cicatrices ocasionadas por insectos y/o ácaros, en una proporción no mayor del 10% del área total del fruto (Foto 4)

- Categoría II: Comprende la granadilla que no puede clasificarse en las categorías anteriores, pero cumple los requisitos generales definidos en la normatividad NTC 4101. Defectos en el color, rugosidades en la cáscara, ausencia de cera, cicatrices superficiales ocasionadas por ácaros, no deben exceder 20% del área del fruto (Foto 5)
Foto 3. Categoría Extra

Foto 4. Categoría I

Foto 5. Categoría II
7. Acondicionamiento del fruto

La práctica de encerado mejora la apariencia del fruto al adquirir un mejor brillo, cuando se utiliza con Primafresh a 500 mg/l; los tratamientos con hipoclorito de sodio a 500 mg/l y Octave (procloraz) a 500 mg/l no contribuyeron a mejorar la apariencia del fruto (Cerdas et al., 1998). Previo al encerado, se recomienda lavar y desinfectar la fruta por medio de inmersión en una mezcla de Tego 51 al 1% y Tiabendazol a 2.500 ppm. El secado se realiza con aire seco forzado a una temperatura entre 29 y 40 °C (Hoyos y Gallo, 1987).

El encerado más la aplicación de Tiabendazol permite almacenar la granadilla a temperatura ambiente sin que se registre pérdida de peso hasta por 20 días y sin que se manifiesten cambios en la apariencia externa del fruto hasta por 30 días (López, 1989).

8. Empaque de la granadilla

El empaque es uno de los factores que más incide sobre la calidad del producto. El empaque más utilizado por los productores es la caja tipo manzanera (Foto 6), la cual tiene una capacidad promedio de 115 granadillas y alcanza un peso neto de 13 kg, considerando un peso promedio por granadilla de 113 g. La caja granadillera de 30 x 28 x 50 cm, con una capacidad de 10 a 12 kg (Saldarriaga, 1998), aunque menos utilizada, ofrece mejores condiciones para la conservación del fruto. Algunos productores utilizan cajas de madera (Foto 7). Otros tipos de empques son canastillas modulares, de 60 x 40 x 25 cm, con una capacidad de 13 kg; y las enterizas con interior liso de 53 x 36 x 34,5 cm, con capacidad entre 13 y 15 kg. En el fondo de las cajas se coloca un tendido de papel: igualmente entre tendido y tendido de granadilla (Castro, 2001).

La fruta tipo exportación se empaca en cajas de cartón, con dimensiones externas 40 x 30 cm o 50 x 30 cm (Foto 8) con alvéolos de plástico o pulpa reforzada (Hoyos y Gallo, 1987; ICONTEC, 1997).

9. Almacenamiento y transporte

El almacenamiento de la fruta se inicia en la finca, donde generalmente permanece durante un día después de la cosecha (Saldarriaga, 1998). La cáscara de la granadilla, dado que posee una corteza dura, se conserva en perfectas condiciones durante períodos relativamente largos (Sandoval et al., 1985). Se recomienda no exceder el almacenamiento más de 30 días a una temperatura de 6 a 7 °C y una humedad relativa de 90% (Bacca, 1987; Castro, 1997).

El peso es la propiedad que tiene mayor variación durante el período de conservación; las granadillas maduras, empacadas en bolsa plástica a temperatura de 8 °C, presentaron la mejor calidad después de 49 días de almacenamiento (Valderrama y Osorno, 1987).
Foto 6. Pesaje de granadilla en caja manzanera

Foto 7. Empaque de granadilla en caja de madera

Foto 8. Empaque tipo exportación (Foto: Fischer)
Hoyos y Gallo (1987) registran como enfermedades poscosecha: Botrytis, alternaria, pseudomonas y levaduras esporuladas. Betancur (1994) encontró que al almacenar granadilla se presentaron problemas con Glomerella para reducir la infección. Nicon PQ fue más eficiente que Mertack y Sportack en los 30 primeros días y la conservación a temperatura ambiente fue el tratamiento que presentó menor infección y mejor apariencia del fruto a los 50 días.

El pH, la dureza, los sólidos solubles y las características organolépticas no son alteradas durante el almacenamiento (Muñoz y Restrepo, 1989). La refrigeración permite las menores pérdidas de fruta hasta los 20 días, pero hasta los 40 días, las condiciones ambientales constituyen el mejor medio de conservación. El tratamiento químico con Thiabendazol es el mejor para la protección contra patógenos.

La granadilla almacenada a temperaturas de 5 y 17 °C incrementa su actividad respiratoria sobre los valores iniciales de 80 y 11 mg CO₂/kg-hr, respectivamente, hasta un valor de 145 mg CO₂/kg-hr, durante los primeros 5 días; luego tiene un comportamiento descendente que alcanza valores cercanos a los iniciales, alrededor de los 20 días de almacenamiento. Durante los 6 días siguientes, se presenta un ligero incremento, después del cual la tasa respiratoria se vuelve constante (Villamizar et al., 1992). La pérdida de peso es lineal, pero en relación directa con el incremento de temperatura, considerando los días 11 y 20 como el día límite de buena calidad, a 17 y 5 °C, respectivamente (Villamizar et al., 1992). Los sólidos solubles y el pH permanecen constantes, lo que indica la escasa influencia del almacenaje a diferentes temperaturas.

Durante el transporte se debe evitar exponer la fruta a la radiación directa del sol, cubriendo los vehículos con carpas de color claro que reflejen la radiación y no la absorban (Cerdas, 1995). Para exportación, la granadilla debe transportarse en contenedores refrigerados a 6 o 7 °C y 90% de HR (Hoyos y Gallo, 1987).

10. Pérdidas poscosecha

La calidad del fruto es función de las prácticas del cultivo y sus características no mejoran en la cosecha o en la poscosecha, solamente se mantienen. La granadilla requiere, al igual que la mayoría de frutos, un manejo poscosecha cuidadoso para mantener la calidad hasta que llegue al consumidor final (Cerdas, 1995).

Se estima que en Colombia se pierde 30% de la fruta cosechada por mal manejo poscosecha. El principal daño que se ocasiona al fruto durante la cosecha es el mal aspecto, al perder su color natural por rayones y fracturas, causadas por:

- Pérdida del revestimiento natural, por contacto directo de las manos con el fruto, que demerita su aspecto brilloso natural
- Rayado del fruto por mala acomodación en la caja de recolección, que demerita el aspecto y genera puertas de entrada a patógenos
- Hongos ocasionados por cosecha de granadilla húmeda
Bibliografía

Garcés OJ, Saldarriaga GR. El cultivo de la Granadilla, Urrao, Cooperativa de Productores de Urrao, Gráficas Ltda, (s.f.), 32p.

CAPITULO XIII

ASPECTOS DE GESTIÓN DEL CULTIVO DE LA GRANADILLA

1. Costos de producción

El análisis económico que se presenta a continuación, corresponde a la información de ingresos y egresos de los productores de granadilla en los municipios de Roldanillo y Bolívar (Valle del Cauca), durante el período 2000-2001.

Los mayores costos de producción del cultivo están representados en el establecimiento, específicamente en costos del sistema de emparrado. De los $6.360.350 que se requieren en el primer año, 46% ($2.917.664) corresponden a los costos del emparrado; de ellos, 25% corresponde a mano de obra y 75% a insumos (estacones y alambre, principalmente) (Tabla 1).

Los costos de insumos para el mantenimiento del cultivo representan $727.160 en insumos cada año, 53% para fertilización y 47% para control de plagas y enfermedades. Los costos de mano de obra son variables cada año, en función de la variación de los costos de cosecha.

Considerando una densidad media de 494 plantas/ha, a una distancia de siembra de 4,5 x 4,5 m, los costos del primer año del cultivo en insumos y mano de obra son de $13.235/planta y el costo promedio de mantenimiento en los años siguientes es de $5.669/planta año.

El cálculo de costos de producción de granadilla depende de la duración del ciclo del cultivo que se considere. Los costos acumulados durante un período de 6 años son $19.812.670 a precios constantes y la producción acumulada en el mismo periodo es de 62,36 t; en consecuencia, el costo de producción promedio de los productores seleccionados del norte del Valle del Cauca, sin considerar costos de amortización del capital, es $318/kg (Tabla 2). Los costos tienen tendencia decreciente, considerando duraciones del cultivo de 3 a 5 años; a partir del quinto año tienden a incrementarse nuevamente. El margen económico que tiene el productor para la comercialización es amplio, si se comparan estos costos de producción con el precio promedio a productor ($994/kg, periodo 2000-2001).

El análisis financiero indica que el Valor Presente Neto (VPN) del cultivo, con un ciclo de producción de 6 años, es de $31.819.137, utilizando una tasa de descuento de 8%, con una TIR de 312%.
<table>
<thead>
<tr>
<th>Actividad</th>
<th>Cantidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano de Obra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparación lote</td>
<td>10.4</td>
<td>104</td>
</tr>
<tr>
<td>Almácigo</td>
<td>10.0</td>
<td>100</td>
</tr>
<tr>
<td>Hoyada y Clavada</td>
<td>14.4</td>
<td>144</td>
</tr>
<tr>
<td>Emparrado</td>
<td>51.2</td>
<td>512</td>
</tr>
<tr>
<td>Taquedo</td>
<td>7.4 8</td>
<td>74</td>
</tr>
<tr>
<td>Preparación hoyos</td>
<td>8.0 80</td>
<td></td>
</tr>
<tr>
<td>Siembra</td>
<td>10.0 99</td>
<td></td>
</tr>
<tr>
<td>Tutorado</td>
<td>5.0 50</td>
<td></td>
</tr>
<tr>
<td>Podas</td>
<td>37.5 374</td>
<td>72.2 722</td>
</tr>
<tr>
<td>Plateos</td>
<td>17.5 174</td>
<td>7 70</td>
</tr>
<tr>
<td>Deshierbas</td>
<td>31.2 312</td>
<td>16.7 167</td>
</tr>
<tr>
<td>Aplicación pesticidas</td>
<td>25.0 249</td>
<td>31.5 315</td>
</tr>
<tr>
<td>Fertilización</td>
<td>17.5 174</td>
<td>11.5 115</td>
</tr>
<tr>
<td>Riego</td>
<td>8.3 83</td>
<td></td>
</tr>
<tr>
<td>Cosecha</td>
<td>10.3 103</td>
<td>77.1 771</td>
</tr>
<tr>
<td>Subtotal</td>
<td>263.9 2638</td>
<td>216.0 2160</td>
</tr>
<tr>
<td>Insumos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbicida</td>
<td>2 35</td>
<td></td>
</tr>
<tr>
<td>Varios</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Estacones</td>
<td>312 936</td>
<td></td>
</tr>
<tr>
<td>Guaduales</td>
<td>218 327</td>
<td></td>
</tr>
<tr>
<td>Alambre 12</td>
<td>181 275</td>
<td></td>
</tr>
<tr>
<td>Alambre 16</td>
<td>208 385</td>
<td></td>
</tr>
<tr>
<td>Alambre Pua</td>
<td>4.2 147</td>
<td></td>
</tr>
<tr>
<td>Fertilizante Orgánico kg/ha</td>
<td>1.497 337</td>
<td>1.182 75</td>
</tr>
<tr>
<td>Fertilizante Fóliar l/ha</td>
<td>10.0 124</td>
<td>11.5 62</td>
</tr>
<tr>
<td>Fertilizante Químico kg/ha</td>
<td>1.249 747</td>
<td>440 252</td>
</tr>
<tr>
<td>Insecticidas l/ha</td>
<td>7.5 173</td>
<td>5.0 187</td>
</tr>
<tr>
<td>Fungicidas kg/ha</td>
<td>8.2 117</td>
<td>4.5 98</td>
</tr>
<tr>
<td>Otros kg/ha</td>
<td>0 156</td>
<td>52 156</td>
</tr>
<tr>
<td>Subtotal</td>
<td>3.721 727</td>
<td>727 727</td>
</tr>
<tr>
<td>Total</td>
<td>6.360 2887</td>
<td>2.862 2.692</td>
</tr>
</tbody>
</table>
Tabla 2. Cálculo de costos de producción de granadilla considerando diferentes años de duración del ciclo del cultivo (precios 2000-2001)

<table>
<thead>
<tr>
<th></th>
<th>3 años</th>
<th>4 años</th>
<th>5 años</th>
<th>6 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos de producción acumulados ($/ha)</td>
<td>12,110,020</td>
<td>14,802,590</td>
<td>17,400,220</td>
<td>19,812,670</td>
</tr>
<tr>
<td>Producción acumulada (t/ha)</td>
<td>34,25</td>
<td>46,28</td>
<td>56,29</td>
<td>62,36</td>
</tr>
<tr>
<td>Costo de producción ($/kg)</td>
<td>354</td>
<td>320</td>
<td>309</td>
<td>318</td>
</tr>
</tbody>
</table>

1 USD=$2.200

La decisión que debe tomar un productor en torno al momento económico óptimo para renovar el cultivo e iniciar un nuevo ciclo, es de tipo económico y comparativo frente a la posibilidad de continuar explotando el cultivo anterior. En la Gráfica 1 se observa que los ingresos netos marginales del cultivo tienen una tendencia decreciente, mientras los ingresos promedio por año se incrementan hasta el año 4. La decisión de mantener un cultivo ya establecido, frente a uno nuevo, se toma asegurándose que los ingresos netos marginales sean mayores a los ingresos netos promedio. Los valores de la Gráfica 1 sugieren que la decisión de los productores de renovar sus cultivos cada 5 años obedece a una lógica económica.

Gráfica 1. Ingresos netos marginales e ingreso neto promedio por año en un cultivo de granadilla de 6 años (precios 2000-2001)
2. Comercialización

2.1 Mercado nacional de la granadilla

En 1998, los departamentos de Valle del Cauca y Antioquia produjeron 87,9% de la producción nacional; en 2000, Valle continúa como el mayor productor (50,7%), seguido en importancia por Quindío, Santander, Risaralda, Antioquia, Chocó y Caldas (Tabla 3).

<table>
<thead>
<tr>
<th>Tabla 3. Producción nacional de granadilla (t) y participación (%) de los principales departamentos productores</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Antioquia</td>
</tr>
<tr>
<td>Boyacá</td>
</tr>
<tr>
<td>Caldas</td>
</tr>
<tr>
<td>Chocó</td>
</tr>
<tr>
<td>Cundinamarca</td>
</tr>
<tr>
<td>Huila</td>
</tr>
<tr>
<td>Quindío</td>
</tr>
<tr>
<td>Risaralda</td>
</tr>
<tr>
<td>Santander</td>
</tr>
<tr>
<td>Valle</td>
</tr>
</tbody>
</table>

Cálculos propios a partir de los datos del Sistemas de Información Estratégica del Sector Agroalimentario (SIESA) de la CCI

Los centros de mayor consumo de la fruta están ubicados en Bogotá, Medellín y Cali (Garcés y Salgarriaga, s.f.). Medellín constituye la plaza con mejores cotizaciones para la fruta a nivel de mayorista, si comparamos los principales mercados para la fruta a nivel nacional; no obstante, esta plaza presenta, al mismo tiempo, los mayores coeficientes de variación (Tabla 4). Bogotá presenta los mejores precios después de Medellín y Cali; y Pereira los más bajos; aunque se mantienen cotizaciones muy similares en éstas dos últimas plazas. Los precios de la fruta son variables dependiendo de las épocas de producción (Bacca, 1987); los mejores precios se presentan entre marzo y junio y los menores precios en noviembre y diciembre (Tabla 4).

Comparando los precios a mayorista en Cali, con los precios a productor en Roldanillo (principal abastecedor del mercado de Cali), se observa que la participación del productor en el precio a mayorista es 65,9% (Tabla 5). El relativo bajo coeficiente de variación de la diferencia de precio entre el mayorista y el productor, podría indicar que el intermediario percibe un margen relativamente constante, independiente del precio de cotización de la fruta.
Tabla 4. Precios de la granadilla a nivel de mayorista en los 4 principales mercados de la fruta en Colombia (año 2000)

<table>
<thead>
<tr>
<th>Mes</th>
<th>Medellín</th>
<th>Cali</th>
<th>Bogotá</th>
<th>Pereira</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>2.331</td>
<td>1.571</td>
<td>1.791</td>
<td>1.529</td>
<td>1.806</td>
</tr>
<tr>
<td>Febrero</td>
<td>1.986</td>
<td>1.413</td>
<td>1.549</td>
<td>1.149</td>
<td>1.524</td>
</tr>
<tr>
<td>Marzo</td>
<td>2.154</td>
<td>1.801</td>
<td>1.894</td>
<td>1.524</td>
<td>1.843</td>
</tr>
<tr>
<td>Abril</td>
<td>2.650</td>
<td>2.086</td>
<td>2.098</td>
<td>1.924</td>
<td>2.190</td>
</tr>
<tr>
<td>Mayo</td>
<td>2.231</td>
<td>1.607</td>
<td>1.742</td>
<td>1.638</td>
<td>1.805</td>
</tr>
<tr>
<td>Junio</td>
<td>2.867</td>
<td>1.801</td>
<td>2.083</td>
<td>1.563</td>
<td>2.079</td>
</tr>
<tr>
<td>Julio</td>
<td>1.876</td>
<td>1.553</td>
<td>1.515</td>
<td>1.405</td>
<td>1.587</td>
</tr>
<tr>
<td>Agosto</td>
<td>1.485</td>
<td>1.656</td>
<td>1.645</td>
<td>1.572</td>
<td>1.590</td>
</tr>
<tr>
<td>Septiembre</td>
<td>1.795</td>
<td>1.709</td>
<td>1.681</td>
<td>1.885</td>
<td>1.768</td>
</tr>
<tr>
<td>Octubre</td>
<td>1.637</td>
<td>1.408</td>
<td>1.652</td>
<td>1.564</td>
<td>1.565</td>
</tr>
<tr>
<td>Noviembre</td>
<td>1.299</td>
<td>1.221</td>
<td>1.249</td>
<td>1.225</td>
<td>1.249</td>
</tr>
<tr>
<td>Diciembre</td>
<td>1.239</td>
<td>1.258</td>
<td>1.377</td>
<td>1.410</td>
<td>1.321</td>
</tr>
<tr>
<td>Promedio</td>
<td>1.963</td>
<td>1.590</td>
<td>1.690</td>
<td>1.532</td>
<td>1.694</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>26</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Cálculos propios a partir de la información de la CCI

Tabla 5. Comparación de los precios de la granadilla a nivel de mayorista (Cali) y precios a productor (Roldanillo)

<table>
<thead>
<tr>
<th>Mes</th>
<th>Precio Mayorista en Cali ($)</th>
<th>Precio Productor (Roldanillo) ($)</th>
<th>Diferencia</th>
<th>Participación del productor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abr-00</td>
<td>2.066</td>
<td>1.429</td>
<td>657</td>
<td>68,5</td>
</tr>
<tr>
<td>May-00</td>
<td>1.607</td>
<td>1.030</td>
<td>577</td>
<td>64,1</td>
</tr>
<tr>
<td>Jun-00</td>
<td>1.801</td>
<td>1.329</td>
<td>472</td>
<td>73,8</td>
</tr>
<tr>
<td>Jul-00</td>
<td>1.553</td>
<td>982</td>
<td>571</td>
<td>63,2</td>
</tr>
<tr>
<td>Ago-00</td>
<td>1.656</td>
<td>1.219</td>
<td>437</td>
<td>73,6</td>
</tr>
<tr>
<td>Sep-00</td>
<td>1.709</td>
<td>1.204</td>
<td>505</td>
<td>70,5</td>
</tr>
<tr>
<td>Oct-00</td>
<td>1.408</td>
<td>922</td>
<td>486</td>
<td>65,5</td>
</tr>
<tr>
<td>Nov-00</td>
<td>1.221</td>
<td>739</td>
<td>482</td>
<td>60,5</td>
</tr>
<tr>
<td>Dic-00</td>
<td>1.258</td>
<td>916</td>
<td>342</td>
<td>72,8</td>
</tr>
<tr>
<td>Ene-01</td>
<td>1.159</td>
<td>666</td>
<td>493</td>
<td>57,5</td>
</tr>
<tr>
<td>Feb-01</td>
<td>910</td>
<td>500</td>
<td>410</td>
<td>54,9</td>
</tr>
<tr>
<td>Promedio</td>
<td>1.488</td>
<td>994</td>
<td>494</td>
<td>65,9</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>23</td>
<td>29</td>
<td>17</td>
<td>10</td>
</tr>
</tbody>
</table>

Los períodos de desabastecimiento de la demanda nacional son cubiertos por importaciones de Ecuador y Venezuela (CCI, 2001); en el año 2000 fueron importadas de Ecuador, 3.620 t, que representaron 26% de la producción nacional (cálculos propios a partir de la información de CCI).
2.2 Mercado internacional de la granadilla

Entre 1991 y 2000, las exportaciones colombianas de pasifloras (granadilla, maracuyá y curuba) crecieron en volumen a una tasa promedio de 4.9% anual y en precio 6.9% (CCI, 2001). Holanda y Alemania son los principales mercado de granadilla colombiana (25.4 y 18.1% del volumen total de la exportación nacional, respectivamente) con una tasa de crecimiento anual promedio de 26.0 y 29.4%, respectivamente, entre 1997 y 2000 (CCI, 2001). Los otros mercados son Francia (5.8%), Reino Unido (5.1%) y España (4.7%). En el año 2000, las exportaciones del país fueron 569,65 t (Toro et al., 2002).

El precio de la granadilla para el importador en Holanda mostró una tendencia ligeramente decreciente, al pasar de US$5.24/kg en promedio en 1997, a US$4.91/kg en el 2000 (Gráfica 2). La volatilidad de los precios (media de la serie de datos dividida por la desviación estándar) es de sólo 5.4%, que indica una relativa estabilidad de la cotización (CCI, 2001). La tendencia a la baja de los precios parece ser consecuencia de los altos precios de la fruta en el mercado minorista, que incide directamente en las decisiones del consumidor y desincentiva la compra de la granadilla. Estos altos precios son consecuencia del precio de importación y de los mayores costos de la distribución, por tratarse de pequeños volúmenes y por las pérdidas que se presentan debido a la baja rotación de los productos (CCI, 1998).

![Gráfica 2. Precio de la granadilla al importador en Holanda (USD/kg) entre 1997 y 2000 (Datos del SIESA de la CCI)](image)

Los mejores precios de la granadilla en Holanda, principal importador de Colombia, se registran en el cuarto trimestre del año (octubre, noviembre y diciembre) una ventaja que puede aprovecharse para el país, dado que coincide con los meses de mayor producción relativa (CCI, 2001). Los precios más bajos en Holanda se registran en el primer trimestre del año (Gráfica 3).
Gráfica 3. Precios de importación de la granadilla en Holanda (promedio de 1997 a 2000) (Datos del SIESA de la CCI)

3. Organización empresarial

Entre 1990 y 1999, la dinámica de crecimiento del comercio de los productos frutícolas fue mayor (4,9%) que la del sector agropecuario en general (3,9%). No obstante este dinamismo de los mercados internacionales de frutas, Colombia se ha venido rezagando al desaprovechar las oportunidades externas y al perder participación en el mercado interno: las importaciones de frutas y hortalizas frescas y procesadas crecieron a una tasa anual promedio de 15,8% entre 1991 y 2000; mientras que las exportaciones, excluyendo el banano, cayeron a una tasa de -2,9% en el mismo periodo (IICA, 2001).

Los factores que determinan la pérdida de dinamismo del sector hortífrutícola son de muy variada naturaleza: políticas, infraestructura, asistencia técnica, etc. No obstante, la baja capacidad de organización de los productores y el consecuente bajo nivel de participación en la cadena de la comercialización, son factores que afectan notablemente la competitividad y el dinamismo del sector.

La producción de la granadilla se realiza principalmente por minifundistas, quienes no tienen la capacidad operativa para la comercialización, razón por la cual ésta se realiza a través de intermediarios. La intervención en el mercado de los intermediarios genera costos altos para el consumidor final y una disminución de ingresos para el productor. La mejor experiencia de organización para la comercialización de la granadilla la tiene la Cooperativa de Urrao, que en 1984 comercializó 40% de la producción; el 60% restante se realizó a través de intermediarios (Bacca, 1987).

Las formas asociativas de cooperación en el campo deben conformar la estructura de producción más adecuada para conciliar uno de los problemas agudos de la agricultura: la búsqueda de un justo equilibrio para los productores rurales. La educación y la información constituyen el camino más eficaz para asegurar el
compromiso de los asociados y fortalecer las empresas asociativas (Henao, 1986). Para Castro (2001), es importante agruparse no sólo como productores de granadilla sino como miembros y participantes de la creación y consolidación del Comité Municipal de Frutas, el cual debe estar articulado a una organización de orden nacional.

Las asociaciones de productores, articuladas a organizaciones gremiales del orden nacional, se convierten en instancias de presión para lograr políticas favorables a sus intereses, hacer promoción e inteligencia de mercados, conseguir insumos a precios más razonables y conseguir mejores precios para el producto.

Paralelo a la organización gremial, los productores deben implementar el uso de registros y el cálculo de costos de producción, indispensables para la toma de decisiones de producción y comercialización. Castro (2001) recomienda registrar la información relacionada con insumos, mano de obra y producción. De igual manera, recomienda llevar registros de: podas, floración, plagas y enfermedades, y cosecha, poscosecha y mercadeo. Los registros deben ser sencillos para la persona encargada de llenarlos y contener la información suficiente para la persona encargada de analizarlos.

Bibliografía

Henao A. Las formas asociativas de cooperación, soporte en la solución de los problemas del campo. En: Bedoya A (compilador). I Seminario Nacional de la Granadilla, Urrao, Secretaría de Agricultura de Antioquia, 1986; 76-84.

CAPITULO XIV

EXPERIENCIAS EN ARREGLOS PRODUCTIVOS
DEL CULTIVO DE LA GRANADILLA

En general, la mayoría de los resultados de investigación de las diferentes disciplinas agrícolas se realizan y son aplicables en sistemas de producción de monocultivos, olvidando la diversidad y complejidad de los policultivos (Tamayo, 1993), que son típicos en los arreglos que manejan los pequeños productores del país. Estos arreglos, temporales o espaciales, se justifican en los beneficios técnicos, económicos y sociales que reportan para el productor.

En la cultura de cultivos asociados con leguminosas semestrales en papa, tomate de árbol y café, entre otros, la leguminosa constituye una fuente de ingresos para el productor mientras la otra especie comienza producción (Tamayo y Varón, 1996). En el caso de la granadilla, es común que durante la fase de establecimiento del cultivo, una vez efectuado el trazado y ubicados los soportes para el emparrado, los campesinos utilicen las calles para sembrar cultivos de corta duración que contribuyan a recuperar la alta inversión inicial en el emparrado y a reducir los costos de producción (Tamayo, 1993). Cerdas (1995) afirma que en Costa Rica, la granadilla también es cultivada por productores que manejan más de un cultivo, un indicador de que la granadilla está ligada a una cultura de policultivos.

En el país, los cultivos comúnmente utilizados en asociación con la granadilla son: frijol (de enredadera y arbustivo), hortalizas y arveja (Bacca, 1987). Aunque menos generalizado la práctica, algunos productores siembran frijol arbustivo o tomate en las calles de la granadilla, cuando se realizan podas fuertes. En términos generales, se recomienda que el cultivo que se vaya a asociar no tenga plagas o enfermedades comunes con la granadilla (Bacca, 1987).

En este capítulo sobre arreglos de granadilla asociada con otros cultivos, se documentan las observaciones realizadas durante 2 años por el proyecto “Recuperación y sistematización de las experiencias generadas por pequeños caficultores con la asociación café – granadilla”, ejecutado por el Grupo de Investigación en Análisis de Sistemas de Producción Agropecuaria (ASPA) de la Universidad de Caldas, con el apoyo del Programa Nacional de Transferencia de Tecnología Agropecuaria (PRONATTA) del Ministerio de Agricultura y Desarrollo Rural. La información generada es indicador de la capacidad que tienen los productores agropecuarios para generar conocimiento autónomo, a través de la prueba y error y del ajuste cotidiano y permanente, y aplicarlo a sus condiciones de producción y a las restricciones propias de sus sistemas productivos. La zona donde se realizó el proyecto, parte alta de los municipios de Roldanillo y Bolívar en el Valle del
Cauca, se caracteriza por una altitud de 1.650 msnm, precipitación 2.200 mm, temperatura media 20 °C, y pendiente 60%. Las fincas poseen cerca de 10 ha de extensión, en promedio, y utilizan mano de obra familiar complementada con mano de obra contratada. La información de costos corresponde al periodo 2000-2001.

1. Experiencias de pequeños caficultores del norte del Valle del Cauca con los arreglos temporales de granadilla con frijol, maíz y arveja

El arreglo temporal frijol-granadilla se realiza tanto con frijol voluble como arbustivo (Foto 1). La siembra de frijol voluble con granadilla impide un buen manejo de las podas, redundando en menor producción, sanidad y longevidad del cultivo de la granadilla, considerando que la poda de formación y el despunte, son prácticas vitales para mantener el cultivo con menor incidencia de secadera, roña y ojo de pollo (Tamayo, 1993). Por su parte, el frijol arbustivo facilita el manejo de la asociación y ofrece condiciones de mayor sanidad por aireación y luminosidad (Tamayo y Varón, 1993). Además, aplicaciones del fungicida Brestanid ocasionan fitotoxicidad hacia la granadilla y su uso se reduce en siembras con frijol arbustivo (Tamayo, 1993).

Bajo el arreglo productivo frijol arbustivo-granadilla, el productor obtiene 1.250 kg/ha de frijol, que a un precio promedio de venta en el 2001 de $1.760/kg, le representan $2.200.000/ha y una retribución de $17.000/jornal. Los costos de producción del frijol en el sistema asociado ($1.088/kg) se reducen sustancialmente en razón de que los controles sanitarios y las fertilizaciones son prácticamente las mismas del cultivo de la granadilla y a él se imputan tales costos (Tabla 1). Los costos de producción están representados en mano de obra (88.2%), semilla (5.9%) y control de hongos (3.5%).

Foto 1. Arreglo productivo temporal frijol-granadilla
Tabla 1. Distribución de los costos de producción de frijol arbustivo asociado con granadilla (valores expresados por hectárea), entre septiembre y noviembre de 2000

<table>
<thead>
<tr>
<th>Labor</th>
<th>Mano de obra (jornales)</th>
<th>Insumos ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación y siembra</td>
<td>18</td>
<td>80.000</td>
</tr>
<tr>
<td>Fumigaciones</td>
<td>12</td>
<td>48.000</td>
</tr>
<tr>
<td>Aporcada</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Abonada</td>
<td>8</td>
<td>28.000</td>
</tr>
<tr>
<td>Control de malezas</td>
<td>2</td>
<td>4.000</td>
</tr>
<tr>
<td>Recolección y poscosecha</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td>160.000</td>
</tr>
</tbody>
</table>

1 USD = J$2.200

No se tienen registros de producción de granadilla comparando lotes asociados y no asociados; sin embargo, Tamayo (1993) y Tamayo y Varón (1996) consideran que las labores de preparación, desyerba y aporte de frijol, afectan el sistema radical de la granadilla. Las heridas ocasionadas son la puerta de entrada para los hongos fitopatógenos que se encuentran en el suelo y que disminuyen la productividad del cultivo. Las infecciones por nemátodos del género *Meloidogyne* sp. son comunes a ambas especies, lo cual favorece el mantenimiento o el incremento de dichas poblaciones (Tamayo y Varón, 1996). Según los mismos investigadores, aunque la especificidad del *Fusarium solani* f. sp. *phaseoli* en frijol ha sido documentada, consideran que debe evaluarse la posibilidad de que ataque a la granadilla. Así mismo, consideran que la situación contraria, es decir la patogenicidad de *Nectria haematococca* (secadera) hacia cultivos de frijol, también merece ser investigada. Aunque no todos los problemas patológicos de la granadilla pueden atribuirse o justificarse por la siembra intercalada de frijol, Bernal *et al.* (1986) sugieren que es más razonable tratar de buscar cultivos de cobertura, para un manejo conservacionista.

Es común que los productores siembren el frijol en la misma línea de siembra de la granadilla, utilizando el mismo alambre del emparrado para sostenerse, lo cual genera una competencia extrema por espacio entre las especies y hace prácticamente imposible las podas de formación de la granadilla (Foto 2). Una práctica fácil y práctica sería utilizar para la siembra del frijol, solamente las calles entre plantas de granadilla y así brindar mejores condiciones de aireación y luminosidad para ambas especies.

El arreglo temporal maíz-granadilla le permite al productor obtener 1.133 kg/ha de maíz, que a un precio promedio de venta en el 2001 de $560/kg, le representan $634.200/ha y una retribución de $16.400/jornal. Los costos de producción de maíz ($345/kg) en un arreglo productivo temporal con la granadilla son bajos, en razón de que el único insumo extra que requiere el componente maíz es la semilla; los controles sanitarios, las fertilizaciones y las desyerbas son las mismas que se realizan al componente granadilla (Tabla 2).
Tabla 2. Distribución de los costos de producción de maíz asociado con granadilla (valores expresados por hectárea), entre febrero y septiembre de 2000

<table>
<thead>
<tr>
<th>Labor</th>
<th>Mano de obra (jornales)</th>
<th>Insumos ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación y siembra</td>
<td>16</td>
<td>11.000</td>
</tr>
<tr>
<td>Aporcada</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Control de malezas</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Recolección y poscosecha</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>11.000</td>
</tr>
</tbody>
</table>

1 USD = $2.200

El mayor problema de la asociación maíz-granadilla es el crecimiento de la planta de maíz, que alcanza y supera el emparrado, mientras que la granadilla está al mismo tiempo expandiéndose sobre el emparrado. Los zarzillos se enredan en la planta de maíz dificultando el manejo del cultivo de la granadilla, principalmente, en las podas de formación (Foto 3). Los costos de producción de maíz también se incrementan por la dificultad que se tiene para cosecharlo sin causarle daño a las ramas de granadilla y por los mayores costos para retirar el material de maíz seco. Una posibilidad que existe para mejorar el arreglo es utilizar materiales de porte bajo; pero desafortunadamente no existe en el mercado nacional oferta de materiales de esta naturaleza para la altura a la que se cultiva la granadilla.

En el arreglo productivo temporal arveja-granadilla, el productor obtiene 2.344 kg/ha, que a un precio promedio de venta en el 2001 de $640/kg, le representan $1.500.000/ha y una retribución de $23.639/jornal. La arveja, cuando se asocia con la granadilla, tiene bajos costos de producción ($313/kg). Uno de los mayores costos de producción de la arveja es el sistema de sostenimiento, costo que se elimina al utilizar el mismo emparrado de la granadilla. Además, la arveja se beneficia de los controles sanitarios y de la fertilización de la granadilla (Tabla 3). Los costos de producción están representados en mano de obra (76.8%), semilla (7.7%) y fertilizante (15.6%).
Foto 3. Arreglo productivo temporal maíz-granadilla

Tabla 3. Distribución de los costos de producción de arveja asociada con granadilla (valores expresados por hectárea), entre septiembre y noviembre de 2000

<table>
<thead>
<tr>
<th>Labor</th>
<th>Mano de obra (jornales)</th>
<th>Insumos ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación y siembra</td>
<td>19</td>
<td>56.000</td>
</tr>
<tr>
<td>Guiado</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Abonada</td>
<td>8</td>
<td>114.000</td>
</tr>
<tr>
<td>Control de malezas</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Recolección y pos cosecha</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>56</td>
<td>170.000</td>
</tr>
</tbody>
</table>

1 USD = $2.200

Los resultados indican que los cultivos asociados mejoran el flujo de caja pues le generan ingresos al productor mientras la granadilla comienza la producción. Los arreglos con frijol y arveja permiten una mayor retribución a la mano de obra y son de mayor productividad, de tal manera que contribuyen, por los mayores ingresos netos, a un mayor financiamiento del emparrado de la granadilla, principal razón de ser de los arreglos temporales. Sin embargo, debe tenerse presente que los riesgos del cultivo del frijol son mayores por la mayor inversión en jornales y en insumos, y las restricciones sanitarias por la presencia de enfermedades comunes con la granadilla. Así mismo, debe considerarse que los riesgos del mercado de la arveja también son mayores, en comparación con el maíz y el frijol.

2. Experiencias de pequeños caficultores del norte del Valle del Cauca con el sistema asociado café-granadilla

La crisis de bajos precios y la dinámica de enfermedades del café han puesto a prueba el ingenio y la creatividad de los caficultores colombianos para superar estos retos. Los productores de mayor capacidad económica aprovecharon la política de reconversión cafetera para iniciar un nuevo proceso de producción, basado en la mayoría de los casos en ganadería y frutales. Los campesinos de menores
recursos identificaron alternativas de diversificación del ingreso, asociando nuevos rubros productivos a los cultivos de café ya establecidos. Frente a la falta de respuestas institucionales adecuadas en investigación y transferencia de tecnología para el manejo de tales asociaciones, los productores tuvieron la necesidad de generar conocimiento autónomo, aplicado a sus propias condiciones de producción. A ese conocimiento autónomo, que funciona y es verificable dentro de un determinado ámbito biofísico o cultural, que puede no poseer un cuerpo teórico que explique el porqué de sus relaciones causa-efecto, y que se destaca dentro del contexto general de la actividad agraria local por sus implicaciones ecológicas, económicas y/o culturales, se le denomina 'Práctica Sobresaliente' (Cano, 1998).

La práctica a que se hace referencia, considerada como sobresaliente, se inició de manera sistemática hace 6-8 años, cuando los pequeños caficultores que alquilaban su fuerza de trabajo en las fincas vecinas de mayor capacidad económica y con cultivos establecidos en frutales, comenzaron a incorporar en sus fincas los procesos tecnológicos en pequeña escala para granadilla en monocultivo, pero integrada a los cultivos de café ya establecidos (Foto 4). En la fase inicial, los productores innovadores incorporaron la granadilla en la soca del café, aspecto que favorecía el trazado para la siembra de la granadilla y la instalación de la infraestructura requerida por este cultivo. La asociación se desarrolló inicialmente como un arreglo temporal, como es tradicional con las asociaciones maíz, frijol y hortalizas, mientras se reiniciaba la producción de café proveniente de la soca. En razón de que el ciclo productivo de la granadilla es mucho mayor que el periodo entre soca y primera cosecha de café, el arreglo temporal cambió hacia un concepto espacial. Al iniciarse la producción de café, la granadilla se encontraba en plena etapa de producción, lo que motivó la identificación de estrategias para su manejo integrado.

Foto 4. Arreglo productivo espacial café-granadilla
Los resultados obtenidos en 4 fincas de la parte alta de los municipios de Roldanillo y Bolivar (Valle del Cauca) en el marco del proyecto Universidad de Caldas-PRONATTA, comparando distintos indicadores de productividad, competitividad, equidad y sostenibilidad ambiental, fueron documentados por Nieto et al. (2001) y Rivera y Nieto (2002); una síntesis de los mismos se presenta a continuación.

La productividad del café (kg café pergamino seco/ha) fue 8.2% inferior en los lotes de café asociado con granadilla, en comparación con los lotes de café monocultivo (Tabla 4), probablemente por las mayores restricciones por luz, no obstante que el café es una planta de bajos puntos de compensación (C3). En cambio, el café de los lotes asociados fue de superior calidad: mayor peso del grano (9%), menor proporción de pasilla (8%) y menor infestación por broca (Hypothemenus hampei Ferr.), (77%). En los lotes asociados, el rendimiento de la granadilla fue 12.026 kg/ha, 85.6% de primera y sólo 14.4% de segunda.

Tabla 4. Comparación de los indicadores de productividad y calidad del café de los lotes en monocultivo y asociado con granadilla

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Café monocultivo</th>
<th>Café-Granadilla</th>
<th>Diferencia %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productividad @ c.p.s./ha.año</td>
<td>134,3</td>
<td>123,3</td>
<td>- 8,2</td>
</tr>
<tr>
<td>Peso del grano seco (g)</td>
<td>0,43</td>
<td>0,47</td>
<td>+ 9</td>
</tr>
<tr>
<td>Pasilla (%)</td>
<td>6,0</td>
<td>5,5</td>
<td>- 8</td>
</tr>
<tr>
<td>Infestación por broca (%)</td>
<td>1,6</td>
<td>0,4</td>
<td>- 77</td>
</tr>
</tbody>
</table>

c.p.s.: café pergamino seco

Los costos de mano de obra fueron superiores (67%) en el sistema asociado con granadilla en comparación con el café monocultivo (Tabla 5). Los gastos en fertilizantes fueron superiores en el sistema asociado (450%), debido a que los productores no sólo utilizan mayor cantidad de fertilizantes químicos edáficos (140 Vs. 558 kg/ha.año) sino que son los únicos que realizan fertilización foliar para la granadilla (11,5 l/ha) y fertilización orgánica (1.182 kg/ha en promedio).

Tabla 5. Comparación de los costos anuales de producción ($/ha) de café monocultivo y asociado con granadilla

<table>
<thead>
<tr>
<th>Rubro</th>
<th>Café monocultivo</th>
<th>Café-Granadilla</th>
<th>Diferencia %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano de obra</td>
<td>1.231.375</td>
<td>2.564.958</td>
<td>+67</td>
</tr>
<tr>
<td>Fertilizantes</td>
<td>83.451</td>
<td>459.707</td>
<td>+450</td>
</tr>
<tr>
<td>Insecticidas</td>
<td>187.458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungicidas</td>
<td>98.521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>52.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.314.826</td>
<td>3.362.691</td>
<td>+156</td>
</tr>
</tbody>
</table>

1 USD = $2.200
Los costos de establecimiento de la granadilla fueron calculados en $6.360.350/ha, 41% en mano de obra y 59% en insumos. Los costos marginales del establecimiento y mantenimiento de la granadilla fueron $3.107.923/ha y los beneficios netos marginales del sistema asociado fueron $7.144.978/ha, lo que permite una tasa marginal de retorno de 230% (Tabla 6).

<table>
<thead>
<tr>
<th>Tabla 6. Análisis marginal del sistema asociado café-granadilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos que varían ($/ha)</td>
</tr>
<tr>
<td>1.314.826</td>
</tr>
<tr>
<td>Costos marginales ($/ha)</td>
</tr>
<tr>
<td>Beneficios que varían ($/ha)</td>
</tr>
<tr>
<td>Beneficios marginales ($/ha)</td>
</tr>
<tr>
<td>Beneficios netos que varían ($/ha)</td>
</tr>
<tr>
<td>Beneficios netos marginales ($/ha)</td>
</tr>
<tr>
<td>TMR (%)</td>
</tr>
</tbody>
</table>

Los resultados indican que el arreglo productivo café-granadilla constituye una estrategia altamente competitiva, en razón de la atractiva tasa marginal de retorno, el mejoramiento de la calidad del café y el flujo de caja positivo que permite. Los costos de producción del café asociado se reducen prácticamente a las labores de recolección, ya que la estrategia de los productores es que el café aproveche la fertilización y los insecticidas y fungicidas que se aplican a la granadilla en el sistema asociado. El sistema integrado café – granadilla tiene ventajas comparativas en las áreas que comienzan a ser marginales para el café, pero que son aptas para el cultivo de la granadilla.

El uso de mano de obra fue 111% superior (123 Vs. 260 jornales/ha.año) en el sistema asociado con granadilla (Tabla 7). Las labores de recolección (de café y granadilla) representan los mayores costos en mano de obra, 79% en monocultivo y 46% en el sistema integrado con granadilla. En la asociación, las podas representan 28% del total de la mano de obra.

El uso de mano de obra es mejor distribuido a través del año en el sistema asociado que en el café monocultivo; las labores de recolección durante la cosecha (en un período de 3 meses) superan el 50% de los jornales en el café monocultivo. La granadilla, en cambio, es un cultivo que requiere labores permanentes, particularmente de poda y recolección. Además de la concentración de la mano de obra durante la época de la cosecha, el monocultivo de café concentra los ingresos en el mismo corto período, contrario al sistema asociado que permite una mejor distribución de los ingresos a través del año.
Tabla 7. Comparación del uso de mano de obra (jornales/ha.año) de café monocultivo y asociado con granadilla

<table>
<thead>
<tr>
<th>Labores</th>
<th>Café monocultivo</th>
<th>Café-Granadilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recolección</td>
<td>97</td>
<td>118</td>
</tr>
<tr>
<td>Deshierba</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>Poda</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Fumigaciones</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Fertilización</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>123</td>
<td>260</td>
</tr>
</tbody>
</table>

1 USD = $2.200

La capacidad de generación de mano de obra es una característica social de la práctica sobresaliente que merece destacarse, sobretodo, en una situación sin precedentes de coyuntura del empleo. También constituye una importante ventaja de tipo social, la demanda continua de mano de obra de la asociación, que elimina la estacionalidad típica del café en monocultivo y que obliga a los pequeños caficultores a migrar en busca de opciones de empleo durante los períodos en que no hay cosecha de café.

La diversificación de los ingresos de la finca y la consecuente reducción de riesgos económicos constituyen argumentos sociales adicionales de la práctica sobresaliente café-granadilla. Llontop (1999) afirma que en el norte del Perú, es el cultivo que ha permitido a las familias rurales afrontar los costos de producción y adquirir infraestructura para el procesamiento del café, constituyendo el principal componente del mejoramiento del nivel de vida. La principal restricción que tiene la práctica para su adopción por parte de pequeños productores, no obstante el retorno económico atractivo, son los altos costos de establecimiento.

Los análisis indican que después de 8 años de implementación del sistema asociado café-granadilla, no hay diferencias importantes en la composición de los suelos al compararlos con los lotes de café en monocultivo (Tabla 8), lo cual sugiere que, no obstante la mayor productividad de los lotes en café con granadilla, el aporte que hacen los productores a través de la fertilización es suficiente para mantener los niveles de nutrientes en el suelo.

Tabla 8. Comparación de las características del suelo en los lotes de café monocultivo y asociado con granadilla

<table>
<thead>
<tr>
<th>Labores</th>
<th>Café monocultivo</th>
<th>Café-Granadilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia orgánica (%)</td>
<td>8,5</td>
<td>8,5</td>
</tr>
<tr>
<td>N (%)</td>
<td>0,42</td>
<td>0,42</td>
</tr>
<tr>
<td>P (ppm)</td>
<td>22</td>
<td>63</td>
</tr>
<tr>
<td>K (mEq/100 g)</td>
<td>0,7</td>
<td>0,8</td>
</tr>
<tr>
<td>pH</td>
<td>6,1</td>
<td>6,0</td>
</tr>
</tbody>
</table>
Las pérdidas de suelo en el sistema asociado, determinadas en parcelas de escorrentía, fueron 2,44 t/ha.año, 36% menos que en café monocultivo (3,83 t/ha.año). El índice de cobertura, aumentado en el cultivo asociado por efecto de las camas de granadilla colocadas a 2 m del suelo, y que a pesar de las podas tiene un alto índice de área foliar en las distintas fases vegetativas del cultivo, reduce el impacto de la lluvia sobre el suelo (Renard et al., 1997).

La abundancia de anélidos fue 92% superior en el sistema asociado en comparación con el café monocultivo (Tabla 9). La diversidad de anélidos también fue mayor en el sistema asociado; en ambos sistemas se observaron individuos de *Martidrilus agricola*, *Pheretima* sp., y *Grossodrilus* sp., mientras en los lotes asociados se observaron además, individuos de *Andiodrilus cabalensis*, *Martidrilus murindo* y *Pontoscole* sp. (Andrade y Morales, 2002). Estos resultados indican que las condiciones de vida que ofrecen los sistemas asociados, favorecen la vida y la dinámica del suelo.

Tabla 9. Comparación de los indicadores de abundancia y diversidad de los anélidos de los lotes de café monocultivo y asociado con granadilla

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Café monocultivo</th>
<th>Café-Granadilla</th>
<th>Diferencia %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundancia (No. de individuos/m²)</td>
<td>25</td>
<td>48</td>
<td>+92</td>
</tr>
<tr>
<td>Diversidad (No. especies)</td>
<td>3</td>
<td>6</td>
<td>+100</td>
</tr>
</tbody>
</table>

Fuente: Andrade y Morales (2002)

Los indicadores relacionados con pérdida de suelo y dinámica de los anélidos en el suelo, señalan las bondades ambientales que tiene la práctica sobresaliente para propiciar la sostenibilidad de los agroecosistemas, y consecuentemente, la productividad primaria futura. Las observaciones concuerdan con Llontop (1990), quien considera que la granadilla se desarrolla en un envidiable agroecosistema con un gran potencial biótico (flora, fauna y policultivo) y abióticos (suelo, materia orgánica y agua disponible).

El arreglo productivo café-granadilla, desarrollado por los pequeños caficultores del norte del Valle del Cauca, obedece en todo sentido a una racionalidad campesina y constituye una práctica sobresaliente válida para la innovación, particularmente en un momento de crisis de la caficultura colombiana. El incremento del área sembrada por finca y del área sembrada en la zona, son indicadores de las bondades que tiene el sistema para la función objetivo del productor. El cultivo asociado parece ajustarse más a sistemas de pequeños productores que buscan mayor retribución a su mano de obra y menor riesgo relativo del cultivo, mientras en zonas óptimas cafeteras, donde se realiza agricultura contratada, se busca optimizar el uso del capital en café y/o granadilla en monocultivo.
Bibliografía

Este libro se terminó de imprimir en los talleres gráficos de Litografos Asociados - LITOAS
En el mes de Noviembre 2002