PROYECTO
«EVALUACIÓN DE MATERIALES DE CACAO (Theobroma cacao L.) DE ALTO RENDIMIENTO EN EL DEPARTAMENTO DE ARAUCA»
PROYECTO

«EVALUACIÓN DE MATERIALES DE CACAO (Theobroma cacao L.) DE ALTO RENDIMIENTO EN EL DEPARTAMENTO DE ARAUCA»

2000
AGRADECIMIENTOS

A LA FEDERACIÓN NACIONAL DE CACAO TEROS y los Autores expresan sus agradecimientos al Programa Nacional de Transferencia de Tecnología PRONATTA, a los productores y a los técnicos que tuvieron que ver con el desarrollo y finalización de este proyecto.

MINISTRO DE AGRICULTURA Y DESARROLLO RURAL
Rodrigo Villalba Mosquera

PRONATTA

Coordinador General: Luis Ernesto Villegas
Coordinadora Centro Oriente: Rubiela Rincón
Asistente Técnico UCR CO: Fabio Yepes Pérez
Coordinador de Seguimiento y Control: Leonardo Velásquez Argüello

FEDERACIÓN NACIONAL DE CACAO TEROS

Junta Directiva

Presidente Ejecutivo: José Omar Pinzón Useche
Dirección Técnica del Proyecto: Jacob Rojas Ardila, I.A.
Director del Proyecto: Jairo Caballero Barrios, I.A.
Coordinador: Eduard Baquero López, I.A.
Colaboración Técnica: Terry Bueno Pedraza, I.A.
Colaboración Operativa: Luis Alberto Castaño
Emiliano Bolívar
Encizar Martínez
Ismael Páez
Januario López
EVALUACIÓN DE MATERIALES DE CACAO
(Theobroma cacao L.) DE ALTO RENDIMIENTO EN EL DEPARTAMENTO DE ARAUCA

CONVENIO FEDECAACAO – PRONATTA

RESUMEN

En el centro experimental Santa Helena y en la granja La Perla, en las fincas La Reforma y El Porvenir de los municipios productores de cacao del departamento de Arauca, Arauquita, Tame, Saravena y Fortul, respectivamente, se realizó la evaluación a 21 materiales de cacao, 18 regionales y 3 introducidos, por características sobresalientes en cuanto a productividad, tolerancia a moniliasis (Moniliophthora rorera) y precocidad para determinar los 5 de mejor comportamiento de acuerdo con esos parámetros, con el fin de entregarlos a los productores para contribuir en el proceso de mejoramiento de sus plantaciones con la inclusión de material genético de alta productividad, adaptado a las condiciones agroecológicas particulares y enriquecer el banco de germoplasma del país.

Los materiales evaluados corresponden a la siguiente denominación: FPSA-1, FPSA-2, FPSA-3, FPSA-11, FPSA-12, FPSA-13, FPAR-1, FPAR-2, FPAR-3, FPAR-11, FPAR-12, FPAR-13, FPTA-1, FPTA-2, FPTA-3, FPTA-11, FPTA-12, FPTA-13, como clones regionales y tres clones introducidos: CAUC-37, CAUC-39, CAUC-43.

Su propagación se hizo con injertación sobre patrones provenientes de híbridos.

Los factores o parámetros estudiados fueron: productividad, precocidad, tolerancia a enfermedades de importancia económica en la región y aspectos relativos a la calidad, como número de granos/mazorca, peso del grano y mazorcas/árboles/ano.

Los materiales de mayor valor en lo referente al comportamiento productivo fueron, en su orden: FPSA-13, FPSA-12, FPSA-11, CAUC-37, FPTA-1 y CAUC-43 con 335, 225, 203, 201, 190 y 168 mazorcas totales, respectivamente.

En el aspecto de precocidad (inicio etapa productiva), se destacaron los materiales: CAUC-37, CAUC-39, CAUC-43, FPTA-1, FPTA-2 y FPSA-11, que iniciaron la emisión de flores entre los ocho y 12 meses después de haberse injertado.

Con respecto al comportamiento frente a monilia, número de mazorcas afectadas por el hongo, la menor incidencia la presentaron los materiales FPSA-2, FPAR-3, CAUC-39, CAUC-43, FPAR-12, FPSA-3 con porcentajes de 0 incidencia para FPSA-2 y FPAR-3 y 0.06%, 1.19%, 1.5% y 1.7% para los demás materiales, respectivamente.
Los mayores valores relacionados con el peso del grano de cacao seco fueron, en su orden, los presentados por los materiales FPTA-11 y FPSA-3 con 1.8 gramos por grano, FPTA-2 con 1.52, FPAR-3 con 1.4 gramos y FPSA-13 con 1.4 gramos. El menor valor lo presentó el material FPAR-2 con 0.85 gramos/grano.

El mayor número de granos por mazorca lo presentaron los clones: FPAR-11 con 55 granos/mazorca, CAUC-43 con 51 granos/mazorca, CAUC-39 con 49 granos/mazorca, FPAR-1 con 47, FPTA-11 con 47, CAUC-37 con 47 y FPSA-2 con 46 granos/mazorca, en promedio, en diferentes muestras realizadas.

La recolección de frutos sanos y enfermos se hizo quincenalmente; la labor de control de monilia no se llevó a cabo en forma semanal, según las recomendaciones al respecto, a fin de someter los materiales a mayor presión de inóculo, con el propósito de estudiar la tolerancia al patógeno.

Para escoger los cinco materiales a entregar a los productores, se tuvo en cuenta la combinación de parámetros, especialmente los de productividad y características de calidad, en especial el índice de grano. En uno de los escogidos se consideró su condición de tolerancia a la monilia. Los primeros son: FPSA-13, FPSA-12, FPSA-11, FPTA-1 y el FPAR-12 por su tolerancia a monilia.

Vista parcial del lote experimental granja La Perla.

ANTECEDENTES

La zona cacaotera del departamento de Arauca posee aproximadamente 8.000 hectáreas ubicadas en los municipios de Araquita, Saravena, Tame y Fortul, la mayoría de ellas establecidas con materiales híbridos. Existe un área potencial de 3.000 a 4.000 hectáreas. Actualmente el departamento produce aproximadamente 3.000 toneladas del grano para el consumo interno nacional, adquiridas en gran parte por la Compañía Nacional de Chocolates y la Casa Luker.

El área cultivada por productor oscila entre 3.0 y 5.0 hectáreas, en promedio, y utiliza fundamentalmente la mano de obra familiar; este cultivo es el que provee la mayor parte de los ingresos de la finca.

La productividad promedio de la región es baja, pues no supera los 500 kg de cacao seco/año, a lo cual contribuyen principalmente los problemas fitosanitarios y la improductividad de muchos árboles originados en la semilla híbrida, además del manejo deficiente dado a las plantaciones.

El material genético que conforma la casi totalidad de los plantios presenta heterogeneidad alta, tanto en producción como en precocidad y comportamiento sanitario, lo que no permite una alta capacidad productiva uniforme para toda la población de árboles.

Por las anteriores razones, es necesario realizar proyectos de investigación de adaptación de materiales genéticos y fortalecer la capacitación técnica institucional, buscando una mayor adopción tecnológica.
La multiplicación de los nuevos materiales hace posible aumentar significativamente la producción, tarea que le compete a la Federación Nacional de Cacaoteros y será posible gracias a los conocimientos arrojados por este tipo de proyectos apoyados por Pronatta.

La Federación Nacional de Cacaoteros, dentro de sus realizaciones cuenta con la selección de materiales sobresalientes a nivel de las fincas, que deben ser estudiados en pruebas regionales. El uso de estos clones permite obtener productividades superiores, tres o cuatro veces por encima de los promedios actuales en plantaciones en las que se ha realizado la propagación por métodos sexuales.

Por los antecedentes señalados, y con el ánimo de obtener material clonal que mejore significativamente la producción, se planteó el presente proyecto de investigación adaptativa, con los objetivos siguientes:

OBJETIVO GENERAL

Evaluar 21 materiales de cacao de alto rendimiento, previamente seleccionados por la Federación Nacional de Cacaoteros, a los cuales se les haya observado mejor comportamiento productivo, en cuanto a resistencia o tolerancia a los problemas fitosanitarios existentes en la zona y que minimicen el impacto ambiental ocasionado por las prácticas comunes del cultivo.

OBJETIVOS ESPECÍFICOS

1. Obtener materiales altamente productivos, resistentes o tolerantes a enfermedades como la moniliasis, de excelente comportamiento y rusticidad.

2. Disminuir las pérdidas en las cosechas, causadas principalmente por enfermedades como moniliasis, escoba de bruja y fitophthora, e insectos como el monalonion.

3. Propender por el aumento de los ingresos del productor cacaotero.

4. Entregar materiales de cacao a los productores que posen características sobresalientes, para que alivien los problemas más incidentes en la zona.

5. Dar a conocer a todos los productores de cacao del departamento las bondades de los materiales evaluados.

MATERIALES Y MÉTODOS

Materiales Genéticos: los materiales utilizados corresponden a los 18 individuos que mejores características habían mostrado a nivel de finca, según el estudio previo efectuado por técnicos de la Federación.
Nacional de Cacao, y a 3 materiales introducidos, correspondientes a los clones Caucasia seleccionados por la compañía Nacional de Chocolates en el bajo Cauca; son los siguientes: FPTA-1, FPAR-1, FPSA-11, FPAR-11, FPSA-1, FPTA-12, FPAR-12, CAUC-37, FPTA-2, FPAR-2, FPSA-12, FPAR-12, CAUC-39, FPTA-3, FPAR-3, FPSA-13, FPAR-13, FPSA-3, FPTA-13, CAUC-43, FPSA-2, FPAR-12.

Denominación: en la nomenclatura usada, la F corresponde a la primera letra de la sigla FEDECACAO; P a la primera letra de la sigla PRONATTA; las letras tercera y cuarta corresponden a las dos primeras letras del municipio en el que se seleccionaron los materiales, así: SA Saravena, AR Arauquita, TA Tame. Los números corresponden al orden de hallazgo de los individuos sobresalientes, dentro del estudio preliminar realizado por la Federación Nacional de Cacao en el que fueron seleccionados.

Ubicación: el presente estudio se desarrolló entre marzo de 1998 y julio de 2000, en los centros experimentales Santa Helena y La Perla, de la Federación Nacional de Cacao, ubicados en Arauquita y Tame y en las fincas La Reforma y Porvenir de Saravena y Fortul, respectivamente; en un área aproximada de 2.0 hectáreas; localizadas a una altura entre los 125 y 350 msnm.

Temperatura: promedio de 27º C.

Régimen pluviométrico: 3.000 mm/año. Los flujos mínimos de agua se presentaron de diciembre a marzo y los máximos de mayo a junio.

Humedad relativa: 80%.

Suelos: francos, profundos, permeables, de coloración oscura, pH variables desde ligeramente ácidos a casi neutros, nivel de fertilidad moderada, bajos en fósforo.
Materiales: los materiales utilizados en el proyecto fueron:

Sintelita, navaja, tijeras, aspersora, bolsas plásticas.
Semilla de cacao, estacas, varetas.
Fertilizantes, herbicidas, fungicidas–cicatrizantes.
Hojas de campo.
Tarjetas de identificación, balanza.

Tipo de riego: goteo y microtubos: se utilizaron cuatro (4) parcelas, con un total de 1.050 árboles clonados.

Diseño: la siembra se hizo en surcos de 15 árboles por material.

RESULTADOS

COMPORTEAMIENTO PRODUCTIVO

De acuerdo con los datos obtenidos, se observó que los mayores valores en términos de productividad para el caso del centro experimental Santa Elena lo presentaron los materiales FPSA-12, CAUC-37, FPSA-13, FPSA-11 y FPTA-1 con un número total de mazorcas de 205, 194, 187, 181 y 134 mazorcas por árbol, respectivamente. Lo cual significa que individualmente se produjeron 13.7 mazorcas por árbol para el caso del FPSA-12, 12.9 para CAUC-37, 12.5 para FPSA-13, 12 para FPSA-11 y 8.9 para FPTA-1.

Cabe destacar que los materiales CAUC-39 y CAUC-43, aunque sus valores en producción total de frutos no fueron los mayores, presentan valores superiores en mazorcas sanas a los presentados por FPTA-1.

Los menores valores lo obtuvieron los materiales FPSA-3, FPAR-11 y FPSA-2, FPSA-1, FPSA-3 con 16, 36, 36, 38 y 50 mazorcas, respectivamente.

Nótese que se trata de la producción durante los primeros 28 meses de edad a partir de su injección.
PREOCIDAD

Para medir la precocidad se consideró el tiempo transcurrido hasta el inicio de la etapa reproductiva (inicio de la floración). Se observó que los materiales que mejor comportamiento presentaron en las cuatro (4) parcelas fueron los siguientes: CAUC-37, CAUC-39, CAUC-43, FPTA-1, FPTA-2 y FPSA-11. Los mismos iniciaron su floración entre los ocho (8) y once (11) meses posteriores a la injertación (Ver cuadros 2, 3 y 4).

COMPORTAMIENTO SANITARIO

El comportamiento en cuanto a la resistencia o tolerancia de los materiales en estudio, para monilia los menores porcentajes de mazorcas afectadas lo obtuvieron: FPAR-3, FPSA-2, CAUC-39, FPAR-12 y FPSA-12. (Ver cuadro 1. Porcentaje de monilia, gráfico 1).

CARACTERÍSTICAS MORFOLÓGICAS DEL GRANO

Estas características revisten especial importancia por tratarse de parámetros considerados en el rendimiento final en términos de peso del producto y su calidad. Los parámetros estudiados son índice de mazorca, número de granos por mazorca e índice de semilla.

El mejor índice de mazorca, representado en el número de mazorcas necesarias para obtener un kilogramo de cacao seco, lo presentaron los materiales FPTA-11 con 12 mazorcas, FPSA-3 con 14, FPAR-1 con 16 y FPAR-12 con 16.

En cuanto al número de granos por mazorca, se destacan los materiales FPAR-11 con 55 granos en promedio, CAUC-43 con 51 granos, CAUC-39 con 49, FPTA-11 y CAUC-37 con 47 granos.

En relación con el índice de semilla, se destacan FPSA-3 y FPTA-11 con 1.8 gramos por grano, FPTA-2 con 1.52, FPAR-3 y FPSA-13 con 1.4. El material FPAR-2 presenta un índice de 0.85, lo que lo hace descartable como clon comercial (Ver cuadro 4).
DISCUSIÓN DE LOS RESULTADOS

El anexo 1 muestra la relación de las características morfológicas de los materiales seleccionados. Información tomada de los árboles de origen sexual que dieron origen a estos clones regionales estudiados.

El corto tiempo de estudio realizado a los materiales de este trabajo no permite obtener resultados más concluyentes, por lo que es necesario continuar observando su comportamiento. Sin embargo, se puede concluir que los cuatro que presentaron la combinación de mayor cantidad de mazorcas e índice de grano por encima de 1.2 pueden ser recomendados para propagarlos en jardines clonales, para que en el futuro cercano sean fuente de yemas para su clonación a nivel comercial, e integrarlos al banco de germoplasma (Ver cuadro 5). Estos son el FPSA-13, FPSA-12, FPSA-11 y FPTA-1.

Al igual que el material FPAR-12, por su relativa tolerancia a monilia, alto índice de mazorca y aceptable número de frutos producidos.

Es posible que la evolución posterior de otros materiales diferentes a los anteriores haga que sean tenidos en cuenta más adelante. En especial habrá que hacer una observación muy especial de FPAR-3 por su tolerancia a monilia y su alto índice de grano, FPSA-2 y CAUC-39, por su posible tolerancia a monilia.

La verdadera precocidad es la que se refiere a número de mazorcas producidas durante los primeros 28 meses y no los que inician la floración en primer lugar, de ahí que los clones CAUC-39, CAUC-43 y FPTA-2, que a pesar de ser los que primero florecieron, no son los de mayor volumen producido en la edad temprana.

La tolerancia manifestada a la monilia, hasta ahora debe considerarse como preliminar, dado el corto tiempo de estudio. Por supuesto, es prematuro que estos clones sean entregados a los productores como fuente de tolerancia. De todas formas, debe destacarse el potencial en términos de tolerancia de materiales como el FPAR-3, FPSA-2 y CAUC-39, a pesar del bajo índice de grano o su condición productiva inferior a los de mayor producción de mazorcas.

La consideración más importante para determinar los cinco materiales escogidos para propagar es la de productividad, representada en la mayor cantidad de mazorcas por árbol, considerando además el índice de grano e índice de mazorca, pues se requiere seleccionar los materiales de alto potencial productivo, conservando en lo posible las mejores características de calidad. El cultivo de los clones escogidos requiere de la aplicación de las medidas recomendadas para el control sanitario.

En términos generales debe continuarse con la observación de los materiales probados en este estudio, en el lote en que se encuentran y en otros ensayos en los que se comparen con los clones universales más sobresalientes.

En adelante, los materiales a utilizar en las fincas comerciales en la región deben ser los clones universales, intercalando por ahora en alguna proporción los escogidos por este estudio; los demás deberán esperar a ser probados más ampliamente para ver su evolución con el paso del tiempo.
CONVENIO FEDECACAO - PRONATTA
«Evaluación de materiales de alto rendimiento en el departamento de Arauco»
Informe de producción

Cuadro 1

<table>
<thead>
<tr>
<th>Material</th>
<th>Mazorcas recolectadas</th>
<th>Mazorcas sanas</th>
<th>Mazorcas con monilia</th>
<th>Mazorcas otros p.f.</th>
<th>Porcentaje de monilia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-FPTA-1</td>
<td>190</td>
<td>151</td>
<td>32</td>
<td>7</td>
<td>16.8</td>
</tr>
<tr>
<td>2-FPAR-1</td>
<td>164</td>
<td>144</td>
<td>15</td>
<td>5</td>
<td>9.1</td>
</tr>
<tr>
<td>3-FPSA-11</td>
<td>203</td>
<td>156</td>
<td>44</td>
<td>3</td>
<td>21.6</td>
</tr>
<tr>
<td>4-FPAR-11</td>
<td>45</td>
<td>38</td>
<td>6</td>
<td>1</td>
<td>13.3</td>
</tr>
<tr>
<td>5-FPSA-1</td>
<td>44</td>
<td>30</td>
<td>12</td>
<td>2</td>
<td>27.7</td>
</tr>
<tr>
<td>6-FPTA-11</td>
<td>57</td>
<td>42</td>
<td>10</td>
<td>5</td>
<td>17.5</td>
</tr>
<tr>
<td>7-CAUC-37</td>
<td>201</td>
<td>183</td>
<td>9</td>
<td>9</td>
<td>4.4</td>
</tr>
<tr>
<td>8-FPTA-2</td>
<td>77</td>
<td>71</td>
<td>5</td>
<td>1</td>
<td>6.4</td>
</tr>
<tr>
<td>9-FPAR-2</td>
<td>129</td>
<td>124</td>
<td>3</td>
<td>2</td>
<td>2.3</td>
</tr>
<tr>
<td>10-FPSA-12</td>
<td>225</td>
<td>204</td>
<td>14</td>
<td>7</td>
<td>6.2</td>
</tr>
<tr>
<td>11-FPAR-12</td>
<td>127</td>
<td>116</td>
<td>2</td>
<td>9</td>
<td>1.5</td>
</tr>
<tr>
<td>12-FPSA-2</td>
<td>36</td>
<td>34</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>13-FPTA-12</td>
<td>122</td>
<td>115</td>
<td>4</td>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>14-CAUC-39</td>
<td>159</td>
<td>155</td>
<td>1</td>
<td>3</td>
<td>0.6</td>
</tr>
<tr>
<td>15-FPTA-3</td>
<td>155</td>
<td>144</td>
<td>5</td>
<td>6</td>
<td>3.2</td>
</tr>
<tr>
<td>16-FPAR-3</td>
<td>80</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17-FPSA-13</td>
<td>335</td>
<td>316</td>
<td>16</td>
<td>3</td>
<td>4.7</td>
</tr>
<tr>
<td>18-FPSA-13</td>
<td>154</td>
<td>143</td>
<td>5</td>
<td>6</td>
<td>3.2</td>
</tr>
<tr>
<td>19-FPSA-3</td>
<td>57</td>
<td>56</td>
<td>1</td>
<td>0</td>
<td>1.7</td>
</tr>
<tr>
<td>20-FPTA-13</td>
<td>137</td>
<td>130</td>
<td>4</td>
<td>3</td>
<td>2.9</td>
</tr>
<tr>
<td>21-CAUC-43</td>
<td>168</td>
<td>165</td>
<td>2</td>
<td>1</td>
<td>1.19</td>
</tr>
</tbody>
</table>

CONSOLIDADO GENERAL, CUATRO PARCELAS

Proyecto de evaluación de alto rendimiento en el departamento de Arauco

Cuadro 2

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Cent. exp. Santa Helena</th>
<th>Granja La Perla</th>
<th>Finca El Porvenir</th>
<th>Finca La Reforma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio floración</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-FPAR-11</td>
<td>Ene-99</td>
<td>Mar-99</td>
<td>Nov.99</td>
<td>Ene.2000</td>
</tr>
<tr>
<td>7-CAUC-37</td>
<td>Nov. 98</td>
<td>Nov. 99</td>
<td>Jun. 99</td>
<td>Nov. 99</td>
</tr>
<tr>
<td>9-FPAR-2</td>
<td>Ago. 99</td>
<td>May. 99</td>
<td>Nov.99</td>
<td>Nov.99</td>
</tr>
<tr>
<td>14-CAUC-39</td>
<td>Nov. 98</td>
<td>Nov.98</td>
<td>Jun. 99</td>
<td>Ago-99</td>
</tr>
</tbody>
</table>

10
Orden de inicio de la floración de los materiales en las diferentes parcelas

Cuadro 3

<table>
<thead>
<tr>
<th>Arauquita</th>
<th>Tame</th>
<th>Saravena</th>
<th>Fortul</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CAUC-37</td>
<td>1. CAUC-37</td>
<td>1. CAUC-39</td>
<td>1. FPTA-2</td>
</tr>
<tr>
<td>4. FPTA-1</td>
<td>4. FPSA-1</td>
<td>4. CAUC-37</td>
<td>4. CAUC-37</td>
</tr>
<tr>
<td>5. FPSA-11</td>
<td>5. CAUC-43</td>
<td>5. FPTA-13</td>
<td>5. CAUC-43</td>
</tr>
</tbody>
</table>

PROYECTO FEDECACAO – PRONATTA

«Evaluación de materiales de cacao (*Theobroma cacao* L.) de alto rendimiento en el departamento de Arauca»

Gráfico 1
CONVENIO FEDECACAO - PRONATTA
«Evaluación de materiales de alto rendimiento en el departamento de Arauca»
Características morfoagronómicas

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Índice mazorca</th>
<th>Granos mazorca</th>
<th>Índice semilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-FPTA-1</td>
<td>20</td>
<td>42</td>
<td>1.2</td>
</tr>
<tr>
<td>2-FPAR-1</td>
<td>16</td>
<td>47</td>
<td>1.3</td>
</tr>
<tr>
<td>3-FPSA-11</td>
<td>17</td>
<td>44</td>
<td>1.29</td>
</tr>
<tr>
<td>4-FPAR-11</td>
<td>17</td>
<td>55</td>
<td>1.09</td>
</tr>
<tr>
<td>5-FPSA-1</td>
<td>19</td>
<td>44</td>
<td>1.2</td>
</tr>
<tr>
<td>6-FPTA-11</td>
<td>12</td>
<td>47</td>
<td>1.8</td>
</tr>
<tr>
<td>7-CAUC-37</td>
<td>25</td>
<td>47.2</td>
<td>1.1</td>
</tr>
<tr>
<td>8-FPTA-2</td>
<td>21</td>
<td>31.2</td>
<td>1.52</td>
</tr>
<tr>
<td>9-FPAR-2</td>
<td>42</td>
<td>28</td>
<td>0.85</td>
</tr>
<tr>
<td>10-FPSA-12</td>
<td>26</td>
<td>31</td>
<td>1.25</td>
</tr>
<tr>
<td>11-FPAR-12</td>
<td>16</td>
<td>44</td>
<td>1.38</td>
</tr>
<tr>
<td>12-FPSA-2</td>
<td>18</td>
<td>46</td>
<td>1.2</td>
</tr>
<tr>
<td>13-FPTA-12</td>
<td>19</td>
<td>44</td>
<td>1.24</td>
</tr>
<tr>
<td>14-CAUC-39</td>
<td>19</td>
<td>49</td>
<td>1.06</td>
</tr>
<tr>
<td>15-FPTA-3</td>
<td>19</td>
<td>42</td>
<td>1.3</td>
</tr>
<tr>
<td>16-FPAR-3</td>
<td>23</td>
<td>31</td>
<td>1.4</td>
</tr>
<tr>
<td>17 FPSA-13</td>
<td>18</td>
<td>40</td>
<td>1.4</td>
</tr>
<tr>
<td>18-FPAR-13</td>
<td>17</td>
<td>44</td>
<td>1.31</td>
</tr>
<tr>
<td>19-FPSA-3</td>
<td>14</td>
<td>42</td>
<td>1.8</td>
</tr>
<tr>
<td>20-FPTA-13</td>
<td>19.2</td>
<td>40</td>
<td>1.3</td>
</tr>
<tr>
<td>21-CAUC-43</td>
<td>17.8</td>
<td>51</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Combinación de características determinadas a los materiales estudiados más sobresalientes

<table>
<thead>
<tr>
<th>Nomenclatura</th>
<th>No. mazorcas producidas</th>
<th>Mayor precocidad</th>
<th>% total monilia</th>
<th>Índice de mazorca</th>
<th>Granos por mazorca</th>
<th>Índice de grano</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPSA-13</td>
<td>335</td>
<td></td>
<td></td>
<td>4.7</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>FPSA-12</td>
<td>225</td>
<td></td>
<td></td>
<td>6.2</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>FPSA-11</td>
<td>203</td>
<td>X</td>
<td>21.6</td>
<td>4.4</td>
<td>25</td>
<td>47</td>
</tr>
<tr>
<td>CAUC-37</td>
<td>201</td>
<td>X</td>
<td>21.6</td>
<td>4.4</td>
<td>25</td>
<td>47</td>
</tr>
<tr>
<td>FPTA-1</td>
<td>190</td>
<td></td>
<td>16.8</td>
<td>20</td>
<td>17</td>
<td>44</td>
</tr>
<tr>
<td>FPTA-11</td>
<td>57</td>
<td></td>
<td>17.5</td>
<td>12</td>
<td>47</td>
<td>42</td>
</tr>
<tr>
<td>FPSA-3</td>
<td>57</td>
<td></td>
<td>1.7</td>
<td>14</td>
<td>16</td>
<td>47</td>
</tr>
<tr>
<td>FPAR-1</td>
<td>164</td>
<td></td>
<td>9.1</td>
<td>16</td>
<td>47</td>
<td>42</td>
</tr>
<tr>
<td>FPAR-12</td>
<td>127</td>
<td></td>
<td>1.5</td>
<td>16</td>
<td>44</td>
<td>42</td>
</tr>
<tr>
<td>CAUC-39</td>
<td>159</td>
<td>X</td>
<td>0.6</td>
<td>19</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>CAUC-43</td>
<td>168</td>
<td>X</td>
<td>1.2</td>
<td>18</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>FPTA-2</td>
<td>77</td>
<td></td>
<td>6.4</td>
<td>21</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>FPAR-3</td>
<td>80</td>
<td></td>
<td>0</td>
<td>23</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>FPSA-2</td>
<td>36</td>
<td></td>
<td>0</td>
<td>18</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>FPAR-11</td>
<td>45</td>
<td></td>
<td>17</td>
<td>17</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>
Promedio de la capacidad productiva por hectárea de los híbridos que actualmente se están usando en Colombia frente a un clon de alto rendimiento

Cuadro 6

<table>
<thead>
<tr>
<th>Edad años</th>
<th>Producción kg/ha</th>
<th>Clon FPSA-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>250</td>
<td>489*</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>1.200</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>1.500</td>
</tr>
<tr>
<td>6</td>
<td>1.000</td>
<td>2.000</td>
</tr>
<tr>
<td>7</td>
<td>1.200</td>
<td>2.500</td>
</tr>
<tr>
<td>8</td>
<td>1.100</td>
<td>2.000</td>
</tr>
</tbody>
</table>

* Datos con dos años y medio

Producción promedio obtenida con los mejores materiales del estudio a los dos años y medio

- FPSA-13 ... 489 kg
- FPSA-12 ... 224 "
- CAUC-37 ... 207 "
- FPSA-11 ... 303 "
- FPTA-1 ... 249.5 "
- FPAR-12 ... 229 "

13
ÁRBOLES SELECCIONADOS DENTRO DEL PROYECTO

Anexo 1

FPSA-12
Hábito: erecto
Pigmentación brotes: no pigmentados
Follaje: abundante
Floración: continua
Color: verde pálido
Ubicación cosecha: tercio medio y superior
Fruto: cun.deamor
Color: verde
Rugosidad: rugoso
Grosor cáscara: delgada
Número granos/mazorca: 30.6
Semilla: ovoide
Color cotiledones: violeta oscura
Compatibilidad: autocompatible
Habilidad combinatoria: alta

FPSA-13
Hábito: erecto
Pigmentación brotes: no pigmentados
Follaje: abundante
Ubicación cosecha: todo el árbol mayor tercio superior
Floración: continua
Color: verde pálido
Fruto: cun.deamor
Color: verde claro
Rugosidad: ligeramente rugoso
Grosor cáscara: intermedia
Número granos/mazorca: 35.8
Forma grano: ovoide
Color cotiledones: violeta pálido
Compatibilidad: autocompatible
Habilidad combinatoria: alta
FPTA-1
Hábito: decumbente
Pigmentación brotes: no pigmentados
Follaje: abundante
Ubicación cosecha: 1ro. y 2do. tercio
Floración: continua
Color: blanca
Fruto: angoleta
Rugosidad: ligeramente rugoso
Color: verde
Grosor cáscara: intermedio
Semilla: ovoide
Color: violeta intermedio
Número granos/mazorca: 41.9
Peso x grano: 1.20 gramos
Comportamiento frente a enfermedades: incidencia media de escoba y monilia.
Compatibilidad: autoincompatible, excelente habilidad combinatoria.

FPAR-12
Hábito: erecto
Pigmentación: medianamente pigmentado
Follaje sin poda: abundante
Ubicación cosecha: primer y segundo tercio
Floración: continua
Fruto: angoleta
Color fruto: morado
Grosor cáscara: delgada
Color cotiledones: violeta oscuro
Semilla: ovoide
Índice de semillas: 1.38
Índice mazorca: 16.4
Número granos por mazorca: 44
Compatibilidad: autocompatible
Reacción a monilia: tolerante
Habilidad combinatoria: alta
CONCLUSIONES Y RECOMENDACIONES

El análisis combinado de los materiales se hizo a partir del cuadro 5, en el que se presentan los 15 materiales que mostraron una condición sobresaliente en relación con una o más variables estudiadas, con el propósito de escoger entre ellos los cinco de mayores ventajas para ser entregados a los productores; estos datos corresponden a la consolidación de las cuatro parcelas.

Al comparar la máxima productividad esperada de una plantación proveniente de semilla híbrida y la esperada por una basada en la inyección de un híbrido como el FPSA-13, sería de la siguiente manera: al tercer año el clon estaría produciendo 2.4 veces más que el híbrido; al cuarto año habría igualado la máxima producción de los híbridos; al sexto año duplicaría su producción y al séptimo estaría con una diferencia de 1.300 kg favorable al clon, es decir, produciría 1.9 veces más (Ver cuadro 5). En consecuencia, la cacaocultura del futuro debe hacerse desde luego a partir de la clonación.

Con el fin de conocer suficientemente los materiales estudiados, tendrán que ser sometidos a pruebas de comparación con los mejores clones universales conocidos.

BIBLIOGRAFÍA

FEDERACIÓN NACIONAL DE CACAOTEROS. 1982. Manual de asistencia técnica. Santafé de Bogotá, DC. Pág. 120.

