UNIVERSIDAD DE PAMPLONA

SINTAP - PRONATTA

Información General

"Higiene, Sanidad y manejo de la leche"

PROGRAMA DE DIVULGACION TECNOLOGICA
PROYECTO
PLANTA PASTEURIZADORA

UNIVERSIDAD DE PAMPLONA
SINTAP - PRONATTA

"Las Instituciones al Servicio de la comunidad Pamplonesa y su provincia"

INFORMACION GENERAL
"HIGIENE, SANIDAD Y MANEJO DE LA LECHE"

ING. CESAR VEGA ROMERO
Profesor Universidad de Pamplona

Transferencia Tecnológica
DEPARTAMENTO DE TECNOLOGÍAS E INGENIERÍAS
FACULTAD DE CIENCIAS NATURALES Y TECNOLÓGICAS
UNIVERSIDAD DE PAMPLONA
1999
PROYECTO PUESTA EN MARCHA DE LA PLANTA PASTEURIZADORA DE LA UNIVERSIDAD DE PAMPLONA

CONVENIO SINTAP - PRONATTA - UNIVERSIDAD DE PAMPLONA

DIRECTORES
ING. CESAR VEGA ROMERO
ESP. HENRY MORALES OCAMPO

COLABORADORES
ING. ANTONIO JOSE BETANCOURTH
ZOOT. LUIS CARLOS VILLAMIZAR L
DR. RODOLFO CONTRERAS C.
DR. CESAR MODESTO CASTRO J.

DISEÑO Y DIGITACION
MIRELLA CASTILLO J.
Tecnóloga en Administración de Sistemas

Pamplona, Abril de 1999
TABLA DE CONTENIDO

INTRODUCCION

OBJETIVOS

1. Proyecto Planta Pasteurizadora UP - SINTAP-PRONATTA
 - Antecedentes.
 - Información General.

2. Higiene, Sanidad y Manejo de la leche fresca.
 - Generalidades de la leche.
 - Composición Química.
 - Sistemas de Ordeño.
 - Manejo y Almacenamiento de la Leche.
 - Calidad de la leche en el hato.
 - Proceso de limpieza y desinfección de recipientes.

Conclusiones.

Bibliografía

Glosario
"Los Hombres son como los ASTROS:
Unos dan Luz por sí mismos.
Otros sólo se limitan a brillar con la que reciben

Al.....
Ing. Antonio Betancourth Walker (Q.E.P.D)
Compañero incansable en el trasegar de la vida.
Una luz que brilla en el albor de la esperanza.
INTRODUCCION

El proyecto puesta en marcha de la Planta Pasteurizadora de la Universidad de Pamplona y su provincia, nace con la necesidad de instalar una empresa que permita jalonar los procesos de producción de materias primas de origen agrícola y pecuario que conlleven a elevar el nivel de vida tanto de productores como de consumidores.

Ante los problemas de explotación por parte de intermediarios, a que se ve abocado el pequeño productor y ante el peligro inminente que representa el consumo de alimentos mal procesados, nace el compromiso entre las entidades SINTAP-PRONATTA - UNIVERSIDAD DE PAMPLONA para poner en marcha una empresa con visión industrial que permita entrar a competir técnicamente en el mercado de los alimentos procesados.

En este contexto y para realizar el proceso de transferencia y socialización del proyecto, se presenta esta información buscando que usted amigo productor le saque el mayor provecho posible.

La leche es un producto altamente perecedero, por lo tanto se requiere de un manejo Higiénico y sanitario que evite su contaminación y alteración, por lo consiguiente todas las medidas que se tomen para evitar su deterioro conllevarán a la obtención de una materia prima de óptima calidad para su procesamiento.
Desde la etapa de formación de la leche, el ordeño y los análisis físicos químicos hasta su llegada a las plantas procesadoras, el manejo integral de la calidad reviste gran importancia para la producción de un bien esencial en la nutrición del hombre. El conocer y aplicar estos hábitos de manejo representarán un beneficio económico, social y de salud, a nivel de productores y consumidores.

"la leche procesada y los productos lácteos, se deben consumir por salud".
OBJETIVOS

GENERALES.

- Dar a conocer el proyecto puesta en marcha de la Planta pasteurizadora de la Universidad de Pamplona en convenio con la entidad SINTAP - PRONATTA, en Pamplona y su provincia.

- Enseñar y aplicar de una manera sencilla los métodos y parámetros a tener en cuenta en el manejo óptimo de la leche a nivel de la finca.

ESPECIFICOS.

- Entendar al productor de leche, de la importancia que representa para sus intereses la puesta en marca de la Planta Pasteurizadora UP-Sintap Pronatta.

- Concinentizar al productor para que implemente hábitos higiénicos y sanitarios en el manejo de la leche.

- Incentivar la producción de leche en la región, como mecanismo generador de bienestar comunitario.

- Proporcionar una alternativa industrial que permita estandarizar precios en la leche y evitar el máximo los intermediarios.
- Servir de medio de capacitación para los productores a nivel de la provincia de Pamplona haciendo hincapié en la salud del consumidor.

- Unir todos los eslabones de la cadena, desde la producción de leche, transporte, hasta la llegada a la Planta procesadora buscando obtener un producto de óptima calidad nutricional, libre de microorganismos patógenos que atenten contra el consumidor.

- Poner al servicio de la comunidad el proyecto Planta Pasteurizadora como mecanismo de desarrollo y servicio de las entidades Sintap - Pronatta - Universidad de Pamplona para beneficio de la comunidad de Pamplona y su provincia.

- Comprometer las instituciones gubernamentales con el entorno social buscando elevar el nivel de vida de los pobladores tanto local como regional.
INFORMACION GENERAL.

PROYECTO PLANTA PASTEURIZADORA UNIVERSIDAD DE PAMPLONA - SINTAP PRONATTA

ANTECEDENTES.

La Universidad de Pamplona en su compromiso con el sector agropecuario instaura a partir de 1983 el Programa de Tecnología de Alimentos como mecanismo de desarrollo del sector agroindustrial, es así como en 1988 le es donada una Planta Pasteurizadora, la cual en el trámite de transporte es desvalijada en sus piezas más importantes impidiendo su puesta en marcha.

Ante las políticas de Gobierno, y las reformas presentadas en el Instituto Colombiano Agropecuario - ICA, nace un Sistema nacional de Ciencia y Tecnología que busca establecer sistemas de coordinación y cofinanciación del desarrollo científico y tecnológico aplicando a los distintos sectores de la producción, en este nuevo contexto se crea el sistema Nacional de Transferencia de Tecnología Agropecuaria SINTAP y el Programa Nacional de Transferencia de Tecnología Agropecuaria-PRONATTA- adscritos al Ministerio de Agricultura y desarrollo rural y el departamento nacional de planeación, con el propósito de desarrollar programas cofinanciados con recursos provenientes del Banco Mundial y con aportes de contrapartida del Gobierno Colombiano y de las entidades participantes.
Teniendo en cuenta lo anterior y ante la necesidad permanente del desarrollo agroindustrial de nuestra provincia, en el año 1995 se presentó el proyecto "Puesta en Marcha de la Planta Pasteurizadora de la Universidad de Pamplona para transformar leches y derivados de óptima calidad para Pamplona y su provincia", el cual luego de una serie de ajustes pertinentes fue avalado, con un costo de inversión aproximado de $150.000.000 de los cuales SINTA - PRONATTA aportó $50.000.000. El proyecto se encuentra en su fase de transferencia tecnológica.
DESCRIPCION DE LA
PLANTA PASTEURIZADORA

PLANO GENERAL
PLANTAS AUXILIARES

- Caldera Vertical de 30 BHP de capacidad
- Banco de Hielo de 4000 Lb de agua a 2°C.
- Compresor de aire con presión de 150 psi.

EQUIPÓS.

- Pateurizador Lento de 2000 litros.
- Homogenizador de 2000 l/hr, 2000 psi.
- Intercambiador de placas 2000 l/hr.
- Empacadora semiautomática 20 bolsas/min.
- 2 bombas sanitarias.
- 2 tanques de recepción en acero inoxidable (1500 litros)
- 1 Tanque de leche pasteurizada.
- Cuarto frío capacidad 18000 litros.
- Furgón con capacidad para 3 toneladas.

La planta está ubicada dentro del Campus Universitario de la Universidad de Pamplona, anexo al Centro de Tecnología de Alimentos CETA, cuenta con su respectivo laboratorio de Análisis Físico-químico y microbiológico, además dispone del servicio de la Planta piloto de lácteos, para fines de transformación de la leche en productos lácteos como: queso doble crema, campesino, costeño, requesón, yogurth, kumys, arequipes, etc...
La capacidad de la Planta Pasteurizadora es de aproximadamente 12,000 litros de leche pasteurizada por día.

La planta pasteurizadora está capacitada para producir otros productos como: Agua en bolsa, Yogurth, Kumys, Néctares, Vikingos, Leches saborizadas.

La planta desarrolló el proceso de puesta en marcha, estandarización y tipificación de la leche pasteurizada en un periodo de 4 meses por parte del consumidor.

En el desarrollo del proyecto está en proceso la adquisición de un cuarto frío para almacenar 15,000 litros de leche pasteurizada y de un furgón isotérmico de 3 toneladas de capacidad para la adquisición de materia prima y distribución de producto terminado.

Las políticas de compra de leche están basadas en la calidad de la materia prima y en promedio se pagan precios de $400/litro puesto en la planta pudiéndose incrementar este precio en proporción a la calidad química de la leche.

La planta comercializa el producto con el nombre de LECHE PASTEURIZADA NEBLINA, en presentaciones de 250 cm3, 500 cm3 y 750 cm3 con precios por debajo de la competencia.

En resumen la Planta Pasteurizadora de la Universidad de Pamplona, es una empresa solidaria sin ánimo de lucro que une principios interinstitucionales que buscan mejorar el nivel de vida de los pobladores rurales y urbanos de Pamplona y su provincia.
2. HIGIENE, SANIDAD Y MANEJO DE LA LECHE FRESCA.

GENERALIDADES.

La leche se considera como una sustancia acuosa en la cual vienen disueltas las proteínas, lactosa, minerales y vitaminas y en emulsión la grasa.

Para que la leche sea de buena calidad debe cumplir los siguientes requisitos:

- **LIBRE DE MICROORGANISMOS PATOGENOS**

 - **E. COLI**
 - **ESTAFILOCOCUS**
 - **SALMONELLAS**
 - **BACILO DE KOCH**

- **LIBRE DE ANTIBIÓTICOS**: Penicilina, Tetraciclina, Streptomicina

 Recuerde cuando use antibióticos en el tratamiento de MASTITIS, la leche para procesar sólo sirve 48 horas después del tratamiento.
NO SE PUEDE
INDUSTRIALIZAR
RECHAZADA!

LECHE
CON
ANTIBIOTICO

LIBRE DE ADULTERANTES

12 % Sólidos

AGUA

LACTOMETRO

GRASA
GERBER

NO INSISTA, CONTIENE MAS DEL
88 % DE H2O,
RECHAZADA!
PERÓXIDOS, FORMALDEHÍDO, MARINAS, AZÚCAR, SUERO EN POLVO Y OTROS

CAMBIO DE COLOR...
PRUEBA POSITIVA!
INCONSCIENTE!

LIBRE DE SUCIEDADES Y CONTAMINANTES
(Estiercol, Barro, plaguicidas).

LAVE-BEN LOS UTENSILIOS
LIBRE DE CALOSTRO

La Leche con calostro al ser Pateurizada se CORTA!

NO DEBE PREVENIR DE ANIMALES CON MASTITIS

C.M.T.

STAFILOCOCCUS AUREUS
STREPTOCOCCUS AGALACTIAE
¡LA LECHE SE CONSUME POR SALUD!
PASOS A SEGUIR EN LA OBTEMNCION DE
UNA LECHE DE EXCELENTE CALIDAD

1. Busque un sitio limpio y tranquilo para el ordeño.
2. No someta el animal a castigos, ni permita que este tensionado durante el ordeño.
3. Lave los utensilios y manos con agua y desinfectante o al menos con agua y jabón antes de proceder a ordeñar.
4. Limpie con agua, las partes cercanas a la ubre del animal y ante la cola.
5. Masajee la ubre del animal al menos durante un minuto.
6. Realice el ordeño en forma rápida entre 5 y 8 minutos por animal.
7. Una vez obtenida la leche, trate de bajarle la temperatura lo más pronto posible.

Tape herméticamente el recipiente que contiene la leche y sumérgalo en una corriente de agua o en un estanque.
NO OLVIDE!

De los Buenos Hábitos de Ordeño Depende la Calidad integral de la leche
La leche se extrae a 37°C de temperatura y contiene aproximadamente 1000 microorganismos por mililitro.

Una vez se retira la leche de su medio natural tiene un período de adecuación o muerte de microorganismos por acción de las enzimas lisozimas y peroxidasas y se denomina **PERIODO GERMICIDA**, luego los microorganismos presentes en la leche se adaptan al medio y comienza su multiplicación logarítmica transformando el carbohidrato de la leche en ácido láctico (**PERIODO DE ACIDIFICACION O FERMENTACION**) el pH baja a niveles de 3,6 donde se inhiben los microorganismos fermentativos y se neutraliza la leche (**PERIODO DE**
NEUTRALIZACION) el pH aumenta a 6,2 y los microorganismos putrefactivos y patógenos, que se encontraban latentes comienzan su proceso de desdoblamiento de grasas, proteínas, sales, etc... formando compuestos tóxicos que pueden ocasionar enfermedades como diarrea, vómito y en casos especiales hasta la muerte (PERIODO DE PUTREFACCION)

PARA QUE NO OCURRA ESTO:

TENGA EN CUENTA LO SIGUIENTE:

- Enfrie la leche lo más pronto posible, una vez ha ordeñado.
- Ordeñe en horas de la mañana y almacene la leche en un lugar fresco.
- Transporte la leche al sitio de recolección o procesamiento en el menor tiempo posible.

UNA LECHE SANA...
ES FUENTE DE INGRESOS
AGUA: 87.7%
GRASA: 3.5%
PROTEINA: 3.5%
LACTOSA: 4.5%
SALES Y MINERALES: 0.8%
VITAMINAS: A, D, E
ENZIMAS: Lipasas, Lisozomas, Oxidoreductasas, Lactoperoxidasa, Proteolasas, Fosfatasa, Catalasa.

SOLIDOS NO GRASOS

SOLIDOS GRASOS

AGUA:

Es el componente de mayor representación en la leche y no debe pasar del 88% de 1 contrario se considera como una leche adulterada. Su contenido está directamente relacionado con la densidad de la leche, la cual se determina con el TERMO LACTODENSIMETRO. Indirectamente se puede determinar por el LACTOMETRO (contenido de sólidos no grasos) y por el CRIOSCOPIO (punto de congelación de la leche).

Parámetros a Tener en Cuenta:

- Densidad = 1.027 gr/ml a 1.033 gr/ml.
- Sólidos No Grasos = 8.2 % - 9%
- Punto Crioscópico = -0.53°C a -0.55°C

Estas son pruebas rápidas y de sencilla aplicación.
UNA LECHE CON UN CONTENIDO DE AGUA MAYOR AL 88% ES.... RECHAZADA!

Densidad < 1.027 gr/ml

SE DECOMISA

- **GRASA:** Es el componente más costoso de la leche, su contenido oscila entre 3.3.0 a 4.50% su porcentaje va aumentando a medida que transcurre el ordeño, por lo tanto, se requiere que éste sea completo y a fondo para evitar que parte de la grasa quede dentro de la ubre ocasionando contaminación de la misma y posible causa de **MASTITIS**.

La grasa es importante desde los siguientes puntos de vista:
• **ECONOMICO.** Es el componente más costoso de la leche y es de amplia utilización a nivel industrial en productos como Cremas, Mantequilla, Helados, Postres, etc.
NUTRICIONAL Cada Gramo de grasa aporta 9 calorías de energía al cuerpo, sus componentes hacen que la grasa de la leche tenga un comportamiento especial a nivel industrial y nutricional, ya que a temperaturas superiores a la temperatura corporal es líquida y a temperaturas bajas (menos de 8°C) se vuelven sólidas (Mantequillas).
El ácido butírico es el responsable del sabor característico de la leche y a la vez es el responsable de su rancidez.

La grasa de la leche se asimila o se almacena pero no es precursora de colesterol sanguíneo.

La grasa en la leche se determina por el método de GERBER, o por el MILK TESTER.
La leche se paga en proporción al contenido de grasa a > %GRASA >> $
CASEINA. (2,8%) Llamada la proteína del queso, ya que es la que coagula con la adición del cuajo de su contenido dependen el rendimiento quesero, importante desde el punto de vista del desarrollo óseo.

ALBUMINAS Y GLOBULINAS. (0.7%) Llamadas proteínas del suero, se pueden separar por calentamiento en medio ácido (Requesón) son importantes en el proceso de crecimiento y defensa del ser humano.
La leche se obtiene 5 días antes de parto y aproximadamente 7 días después del parto, se denomina CALOSTRO, es rica en grasa (6%), en proteína INMUNOGLOBULINAS (1.8%), es de calor amarillento, sabor amargo y pobre en lactosa (azúcar).

Esta leche no sirve para uso industrial y su destino debe ser exclusivamente para la cria ya que es la que da las fortalezas necesarias para su normal crecimiento.

Mezclada con panela o azúcar, es sabrosa por su alto contenido de grasa pero no cumple ninguna función en el organismo humano a no ser que de pronto se convierta en un problema de salud.
LACTOSA. (4,5 - 5%). Es el azúcar de la leche, su importancia radica en que es una fuente energética (1 gramo produce 4.5 calorías). La lactosa es soluble en agua por lo tanto en el proceso de cuajado se va en el suero, aquí radica la importancia del suero como alimento para uso animal. De la misma manera la lactosa es el componente a partir del cual los microorganismos desarrollan compuestos secundarios como ácido láctico, CO₂, Ácido acético, Alcohol, Acetaldehídos, Cetonas, etc...

Lactosa Acido Láctico + Otros Compuestos

La cantidad de ácido láctico formado, determina el grado de adecuación de la leche para ser transformada y se le denomina como ACIDEZ de la leche, la cual está en función del pH, como se ve en la siguiente figura:

<table>
<thead>
<tr>
<th>Acidez</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 - 14°D</td>
<td>6.8 - 7.00</td>
</tr>
<tr>
<td>(25° D)</td>
<td>6.4</td>
</tr>
<tr>
<td>(140°D)</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Punto Isoeléctrico
La leche sale normalmente a pH: 7 lo que representa entre 12 y 14º Dornic de acidez (0.12 - 0.14 % Acido Láctico), a esta se denomina ACIDEZ NATURAL y depende de los componentes de la leche. Luego sigue la ACIDEZ DESARROLLADA, la cual está dada por los microorganismos a partir de la lactosa, sus valores pueden oscilar entre 14º Dornic hasta 140º Dornic, donde la leche llega a su punto isoelectrónico y se corta. Esta acidez se debe controlar con procesos como: Enfriamiento, pasteurización o transformación de la leche en otros productos.

La acidez de la leche determina si está apta o no para ser procesada.

Una leche ácida en presencia de calor se cor4ta (No se puede pasteurizar y por ende industrializar).

- Una leche ácida si se mezcla con Alcohol Etílico se corta por deshidratación.
- Una leche ácida cruda es fuente de gran cantidad de microorganismos muchos de los cuales pueden ser patógenos.

Cómo se determina la acidez de la leche?
EN EL HAYO:

- PRUEBA DE ALCOHOL.

 (ALCOHOLÍMETRO). Consiste en Mezclar cantidades iguales de leche cruda con alcohol al 68 - 70%, si la leche se corta significa que tiene una acidez superior a 17 - 18ºD (0.17% al - 0.18 % Al). Esta leche está en su punto límite de acidez por lo tanto hay que procesarla inmediatamente.
- **DETERMINACION DE PH.** (Phimetro)

 PH: 6.6 - 6.80

 Hay que procesarla inmediatamente

- **ACIDEZ POR TITULACION.** (a Nivel de la Planta Procesadora)

 NaOH 0.1N

 0 ml - 0°D

 10 ml - 10°D

 20 ml - 20°D

 9 ml de leche + 3.4 gotas de Fenolftaleína

 Cuando la leche tome un color rosado, miramos la cantidad de NaOH gastadas y decimos que por cada 10 ml de NaOH representa 10°C Dornie.

 Los límites de acidez de la leche para procesamiento son:
0.18% Acido Láctico = 18º Dornic = 20º Thorner = 8º Soxleth

Leche con acidez mayor de 18º Dornic,

NO SE RECIBE

EN LA PLANTA PASTEURIZADORA

Entre 18 - 25ºD, se puede utilizar en hacer arequipe y se pagaría a menor precio.

Entre 25ºD y 110ºD, para elaborar quesos hilados (Doble-Crema, Pera, Quesillo) **NO SE RECIBE EN PLANTA**.

Con lo dicho anteriormente la acidez de la leche está relacionada con el número de microorganismos, lo cual se puede medir indirectamente por la prueba de reducción de AZUL DE METILENO, que consiste en adicionar una gota de azul de metileno al 2%, en 10 ml de leche cruda y llevarla al baño de Maria (37ºC), la leche se tiñe de un color azul marino, se mira la leche cada media hora, cuando esta vuelva a su estado normal de color blanco, se escribe el tiempo de reducción de azul de metileno (T.R.A.M).
10 ml Leche cruda
+ 1 gota Azul Metileno

BAÑO DE MARIA
+ 37°

INTERPRETACION

<table>
<thead>
<tr>
<th>Tiempo de Reducción del azul de Metileno (T.R.A.M)</th>
<th>CALIDAD DE LA LECHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor de 1 hora</td>
<td>Muy mala calidad</td>
</tr>
<tr>
<td>Entre 1 - 2 horas</td>
<td>Mala calidad</td>
</tr>
<tr>
<td>Entre 2 - 3 horas</td>
<td>Regular calidad</td>
</tr>
<tr>
<td>Entre 3 - 4 horas</td>
<td>Buena calidad</td>
</tr>
<tr>
<td>Mayor de 4 horas</td>
<td>Muy buena calidad</td>
</tr>
</tbody>
</table>
Cuando la leche salga de regular, mala o muy mala calidad se procederá a realizar un llamado de atención por escrito, cuando se llegue a tres llamadas de atención se cancelará la compra de esta leche.

Piense y Recuerde LA PLANTA PASTEURIZADORA "NEBLINA" cuenta con el personal y el equipo necesario para controlar la calidad de la leche, por lo consiguiente cualquier intento de fraude o adulteración de la leche será captada con facilidad.

SALES Y MINERALES.
Su contenido en la leche es bajo y se encuentran asociados a otros componentes su importancia radica en los procesos de industrialización y nutrición, las sales especialmente los citratos y fosfatos son generadores de aroma y sabor en los productos lácteos. Los minerales Calcio y Fósforo, son indispensables en la dieta para la formación ósea y dental.
Las vitaminas de la leche son:

VITAMINA A

Indispensable en todas las especies animales, la provitamina A más importante es la beta coroteno, responsable del color amarillo de la grasa de la leche; entre sus funciones más importantes está: Desarrollo normal de la piel y el pelo, formación y función de las mucosas del cuerpo, vitamina del crecimiento y anti-infecciosa.

VITAMINA D

Necesaria para el desarrollo normal del esqueleto, junto con el calcio y con el fósforo.
VITAMINAE (TOCOFEROL)

se encuentra en la grasa de la leche y es la llamada Vitamina anti-esteril, desempeña funciones metabólicas y su deficiencia puede producir trastornos en los tejidos glandulares y musculares en el sistema nervioso.

OTRAS VITAMINAS.

- Vitamina C (Acido Ascóbico).
- Vitamina B2 (Riboflavina).
- Vitamina B3 (Acido Pantoténcico)
- Vitamina B6 (Piridoxina).

Las cuales se han encontrado trazas y su presencia se pierde durante el procesamiento de la leche.

En Términos generales se considera que la leche no es buena fuente de vitaminas.
La leche de buena calidad debe presentar las siguientes características.

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
<th>RANGO OPTIMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad</td>
<td>1.027 - 1.033 gr/ml</td>
</tr>
<tr>
<td>Sólidos No Grasos.</td>
<td>8.2 % - 9 %</td>
</tr>
<tr>
<td>Grasa.</td>
<td>3.5 % - 4 %</td>
</tr>
<tr>
<td>Proteina.</td>
<td>3.3 % - 3.5 %</td>
</tr>
<tr>
<td>Lactosa.</td>
<td>4.5 % - 4.8 %</td>
</tr>
<tr>
<td>Punto Crioscópico.</td>
<td>- 0.53°C - 0.55°C</td>
</tr>
<tr>
<td>PH.</td>
<td>6.60 - 6.80</td>
</tr>
<tr>
<td>Acidez</td>
<td>16 - 18° Dornic</td>
</tr>
<tr>
<td>T.R.A.M.</td>
<td>3 - 4 horas</td>
</tr>
</tbody>
</table>

Además debe estar libre de:

Mastitis, Calostro, Adulterantes y Microorganismos Patógenos!

De usted y su conciencia depende la calidad integral de la leche.
1. **Con respecto a la leche.**

- Agua mayor del 88%
- Sólidos No grasos < 8.2%
- Pto Criocópico < -0.53°C
- Acidez > 25ºDornic
- Densidad < 1.027 gr/ml
- Leche hervida
- Leche mastítica
- Leche calostrada
- Leche con adulterantes

LEASE BIEN "SE RECHAZAN"

2. **Con respecto al contenido de grasa.**

- Con un contenido de grasa mayor al 4% (Grasa > 4%) se pagan $20 por litro adicionales.
- Con un contenido de grasa entre 3.5% al 4% se paga a $400 el litro.
- Con un contenido de grasa menor de 3.5% (Grasa < 3.5%) se paga $20 por litro por debajo del precio normal.
Contenido de Grasa

<table>
<thead>
<tr>
<th>%</th>
<th>PRECIO ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayor al 4%</td>
<td>$420 / litro</td>
</tr>
<tr>
<td>Entre 3.5 - 4%</td>
<td>$400 / litro</td>
</tr>
<tr>
<td>Menor 3.5%</td>
<td>$380 / litro</td>
</tr>
</tbody>
</table>

Con respecto a la acidez y al T.R.A.M.

<table>
<thead>
<tr>
<th>RANGO DE ACIDEZ (°DORNIC)</th>
<th>PRECIO ($)</th>
<th>T.R.A.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 - 18° D</td>
<td>$420 / Litro</td>
<td>> 3 horas</td>
</tr>
<tr>
<td>18 - 20° D</td>
<td>$400 / litro</td>
<td>> 3 horas</td>
</tr>
<tr>
<td>20 - 25° D</td>
<td>$350 / litro</td>
<td>> 2 horas</td>
</tr>
<tr>
<td>> 25° D</td>
<td>NO SE COMPRA</td>
<td></td>
</tr>
</tbody>
</table>

Una leche de **EXCELENTE CALIDAD** tendría:

- Grasa > 4%
- SNG > 8.4%
- Proteína > 3.5%
- Densidad > 1.030 gr/ml
- Acidez > 16° Dornic
- T.R.A.M > 4 horas

Libre de adulterantes, Mastitis y calostro y se paga a $450 / litro
PROCESO DE LIMPIEZA Y DESINFECCION

LIMPIEZA

Son las operaciones mediante las cuales se retiran las impurezas que pueden afectar la calidad de la leche entre estar están: partículas de polvo, pasto, estiércol, hojas, semillas, residuos grasos y proteicos.

Generalmente se hacen con detergentes alcalinos y/o ácidos y con abundante agua.

Este proceso se debe aplicar a baldes, cantinas, establos, manos y demás utensilios que puedan ser contaminados por impurezas.

DESINFECCION

Operación mediante la cual se eliminan los microorganismos que puedan dañar la leche, normalmente se hace con cloro o limpio (Disuelva 3 - 4 cucharadas de clorox para un balde de agua caliente). El proceso de desinfección se debe aplicar a:
- Manos del ordeñador.
- Al pezón del animal antes y después del ordeño.
- A la zona alrededor de la ubre del animal.
- A los recipientes que van a contener la leche.

PASOS A SEGUIR EN EL PROCESO DE LIMPIEZA Y DESINFECCIÓN

1. Lave con abundante agua los recipientes.
2. Lave con una solución de agua caliente y detergente los recipientes (100 gramos de jabón para un balde de agua caliente).
3. Lave con abundante agua para eliminar el exceso de jabón.
4. Enjuague con solución desinfectante.

Los detergentes (Fab, Top, Dersa) en polvo y los desinfectantes (Clorox, Limpido) se encuentran a precios módicos en el mercado y su uso determina en gran porcentaje la buena calidad de la leche.
RECOMENDACIONES FINALES

PARA EL ORDEÑADOR.

❖ No ordeñe cuando presente uno de los siguientes problemas:

- Heridas, supuraciones.
- Cuando presente alguna enfermedad infecto-contagiosa: Tuberculosis, Brucelosis, etc.
- Infecciones gastro-intestinales, nasales, o tos.

❖ Lave bien sus manos y desinfectelas antes del ordeño.

❖ Elimine los primeros chorros (3 o 4) de leche, ellos son portadores de gran cantidad de microorganismos.

❖ Ordeñe a fondo, la mayor cantidad de grasa viene al final de ordeño y afecta la calidad de la leche.

❖ No mezcle cañoso, leche de animales másticos con leche normal, usted sabe que lo malo daña lo bueno.

❖ Desinfecte la ubre del animal antes y después del ordeño, esto reduce el peligro de MASTITIS.
La leche procedente de animales con tratamientos de antibióticos no inferior a 48 horas, traen residuos de estos y no sirven para industrializar por lo tanto no la mezcle con leche de buena calidad.

Sea cuidadoso con las sustancias químicas como plaguicidas, si estas llegan a la leche son mortales para el consumidor.

En conclusión amigo ordeñador...

En sus manos y en sus buenos hábitos se encuentra el obtener una materia prima de excelente calidad para la VIDA.

Para terminar esta cartilla, le resalto, AMIGO PRODUCTOR, que la Planta Pasteurizadora "NEBLINA" de la Universidad de Pamplona es una empresa diseñada, instalada y concebida por Instituciones como SINTAP - PRONATTA - UNIVERSIDAD DE PAMPLONA, de orden Gubernamental sin ánimo de lucro que propende por el bienestar de Pamplona y su provincia. "LAS INSTITUCIONES AL SERVICIO DE LA COMUNIDAD".
LA PLANTA PASTEURIZADORA
DE LA UNIVERSIDAD
DE PAMPLONA
ES UN SERVICIO...
NO UN NEGOCIO!
BIBLIOGRAFÍA

- VEGA ROMERO, César.
 Tecnología de Alimentos I (Lácteos)
 Universidad de Pamplona 1997

- SCHNEIDER Karl / ARROYO Manuel.
 Tratado Práctico de los Análisis de la leche.
 Madrid (España) 1994

- RAVILLA Aurelio.
 Tecnología de la leche Editorial IICA
 San José (Costa Rica) 1985

- Ley 9 de 1979 y Decreto 2437 de 1983.
 Ministerio de Salud Colombia.
LECHE PASTEURIZADA

NEBLINA

Homogenizada
Estandarizada y
sin preservativos

Consérvese refrigerada
LSF-II-50150487